BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 10049796)

  • 21. A comprehensive model for reproductive and developmental toxicity hazard identification: II. Construction of QSAR models to predict activities of untested chemicals.
    Matthews EJ; Kruhlak NL; Daniel Benz R; Ivanov J; Klopman G; Contrera JF
    Regul Toxicol Pharmacol; 2007 Mar; 47(2):136-55. PubMed ID: 17175082
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An analysis of genetic toxicity, reproductive and developmental toxicity, and carcinogenicity data: I. Identification of carcinogens using surrogate endpoints.
    Matthews EJ; Kruhlak NL; Cimino MC; Benz RD; Contrera JF
    Regul Toxicol Pharmacol; 2006 Mar; 44(2):83-96. PubMed ID: 16386343
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of the OECD (Q)SAR Application Toolbox and Toxtree for predicting and profiling the carcinogenic potential of chemicals.
    Mombelli E; Devillers J
    SAR QSAR Environ Res; 2010 Oct; 21(7-8):731-52. PubMed ID: 21120759
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of quantitative structure-activity relationship (QSAR) models to predict the carcinogenic potency of chemicals I. Alternative toxicity measures as an estimator of carcinogenic potency.
    Venkatapathy R; Wang CY; Bruce RM; Moudgal C
    Toxicol Appl Pharmacol; 2009 Jan; 234(2):209-21. PubMed ID: 18977375
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Prospects for using the SOS-Chromotest for predicting carcinogenic activity of chemical compounds].
    Koreshkova SV; Tanirbergenov TB; Tarasov VA
    Genetika; 1995 Jun; 31(6):861-4. PubMed ID: 7635324
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantitative structure-carcinogenicity relationship for detecting structural alerts in nitroso compounds: species, rat; sex, female; route of administration, gavage.
    Morales Helguera A; Pérez González M; Dias Soeiro Cordeiro MN; Cabrera Pérez MA
    Chem Res Toxicol; 2008 Mar; 21(3):633-42. PubMed ID: 18293904
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Quantitative structure carcinogenicity relationship for detecting structural alerts in nitroso-compounds: species: rat; sex: male; route of administration: water.
    Helguera AM; Cordeiro MN; Pérez MA; Combes RD; González MP
    Toxicol Appl Pharmacol; 2008 Sep; 231(2):197-207. PubMed ID: 18533217
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computer-aided analysis of mutagenicity and cell transformation data for assessing their relationship with carcinogenicity.
    Taningher M; Malacarne D; Perrotta A; Parodi S
    Environ Mol Mutagen; 1999; 33(3):226-39. PubMed ID: 10334625
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of the rodent carcinogenicity of 60 pesticides by the DEREKfW expert system.
    Crettaz P; Benigni R
    J Chem Inf Model; 2005; 45(6):1864-73. PubMed ID: 16309294
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A computerized connectivity approach for analyzing the structural basis of mutagenicity in Salmonella and its relationship with rodent carcinogenicity.
    Perrotta A; Malacarne D; Taningher M; Pesenti R; Paolucci M; Parodi S
    Environ Mol Mutagen; 1996; 28(1):31-50. PubMed ID: 8698045
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of QSAR models for predicting hepatocarcinogenic toxicity of chemicals.
    Massarelli I; Imbriani M; Coi A; Saraceno M; Carli N; Bianucci AM
    Eur J Med Chem; 2009 Sep; 44(9):3658-64. PubMed ID: 19272677
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of the Salmonella umu test with 83 NTP chemicals.
    Yasunaga K; Kiyonari A; Oikawa T; Abe N; Yoshikawa K
    Environ Mol Mutagen; 2004; 44(4):329-45. PubMed ID: 15476194
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three new consensus QSAR models for the prediction of Ames genotoxicity.
    Votano JR; Parham M; Hall LH; Kier LB; Oloff S; Tropsha A; Xie Q; Tong W
    Mutagenesis; 2004 Sep; 19(5):365-77. PubMed ID: 15388809
    [TBL] [Abstract][Full Text] [Related]  

  • 34. AI and SAR approaches for predicting chemical carcinogenicity: survey and status report.
    Richardt AM; Benigni R
    SAR QSAR Environ Res; 2002 Mar; 13(1):1-19. PubMed ID: 12074379
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Building an organ-specific carcinogenic database for SAR analyses.
    Young J; Tong W; Fang H; Xie Q; Pearce B; Hashemi R; Beger R; Cheeseman M; Chen J; Chang YC; Kodell R
    J Toxicol Environ Health A; 2004 Sep; 67(17):1363-89. PubMed ID: 15371237
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Short-term tests for defining mutagenic carcinogens.
    Waters MD; Stack HF; Jackson MA
    IARC Sci Publ; 1999; (146):499-536. PubMed ID: 10353401
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Efficiency of evaluating the carcinogenicity of chemical substances in short-term tests and the SAR model].
    Tarasov VA; Tsarenko NA; Mel'nik VA; Mustafaev ON; Makedonov GP; Tarasov AV
    Genetika; 2009 Dec; 45(12):1674-84. PubMed ID: 20198980
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A reexamination of the low prevalence of carcinogens in an early carcinogen screen.
    McGregor DB; Pangrekar J; Rosenkranz HS; Klopman G
    Regul Toxicol Pharmacol; 1994 Feb; 19(1):97-105. PubMed ID: 8159818
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of rodent carcinogenicity utilizing a battery of in vitro and in vivo genotoxicity tests.
    Kim BS; Margolin BH
    Environ Mol Mutagen; 1999; 34(4):297-304. PubMed ID: 10618179
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diversity analysis of 14 156 molecules tested by the National Cancer Institute for anti-HIV activity using the quantitative structure-activity relational expert system MCASE.
    Klopman G; Tu M
    J Med Chem; 1999 Mar; 42(6):992-8. PubMed ID: 10090782
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.