These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 10049828)

  • 1. The cleavable carboxyl-terminus of the small coat protein of cowpea mosaic virus is involved in RNA encapsidation.
    Taylor KM; Spall VE; Butler PJ; Lomonossoff GP
    Virology; 1999 Mar; 255(1):129-37. PubMed ID: 10049828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino acids at the exposed C-terminus of the S coat protein of cowpea mosaic virus play different roles in particle formation and viral systemic movement.
    Meshcheriakova Y; Lomonossoff GP
    J Gen Virol; 2019 Jul; 100(7):1165-1170. PubMed ID: 31169482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Studies on hybrid comoviruses reveal the importance of three-dimensional structure for processing of the viral coat proteins and show that the specificity of cleavage is greater in trans than in cis.
    Clark AJ; Bertens P; Wellink J; Shanks M; Lomonossoff GP
    Virology; 1999 Oct; 263(1):184-94. PubMed ID: 10544093
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a coat protein binding site on southern bean mosaic virus RNA.
    Hacker DL
    Virology; 1995 Mar; 207(2):562-5. PubMed ID: 7886960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on the movement of cowpea mosaic virus using the jellyfish green fluorescent protein.
    Verver J; Wellink J; Van Lent J; Gopinath K; Van Kammen A
    Virology; 1998 Mar; 242(1):22-7. PubMed ID: 9501035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Encapsidation of Viral RNA in
    Kruse I; Peyret H; Saxena P; Lomonossoff GP
    J Virol; 2019 Jan; 93(2):. PubMed ID: 30355698
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering cowpea mosaic virus RNA-2 into a vector to express heterologous proteins in plants.
    Gopinath K; Wellink J; Porta C; Taylor KM; Lomonossoff GP; van Kammen A
    Virology; 2000 Feb; 267(2):159-73. PubMed ID: 10662612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The NTP-binding motif in cowpea mosaic virus B polyprotein is essential for viral replication.
    Peters SA; Verver J; Nollen EA; van Lent JW; Wellink J; van Kammen A
    J Gen Virol; 1994 Nov; 75 ( Pt 11)():3167-76. PubMed ID: 7964626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of assembly and genome packaging in an RNA virus revealed by high-resolution cryo-EM.
    Hesketh EL; Meshcheriakova Y; Dent KC; Saxena P; Thompson RF; Cockburn JJ; Lomonossoff GP; Ranson NA
    Nat Commun; 2015 Dec; 6():10113. PubMed ID: 26657148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capsid proteins of cowpea mosaic virus transiently expressed in protoplasts form virus-like particles.
    Wellink J; Verver J; Van Lent J; Van Kammen A
    Virology; 1996 Oct; 224(1):352-5. PubMed ID: 8862434
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutational analysis of the cowpea mosaic virus movement protein.
    Bertens P; Wellink J; Goldbach R; van Kammen A
    Virology; 2000 Feb; 267(2):199-208. PubMed ID: 10662615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cryo-electron microscopy structure of Broad Bean Stain Virus suggests a common capsid assembly mechanism among comoviruses.
    Lecorre F; Lai-Kee-Him J; Blanc S; Zeddam JL; Trapani S; Bron P
    Virology; 2019 Apr; 530():75-84. PubMed ID: 30782565
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deletions in the conserved amino-terminal basic arm of cucumber mosaic virus coat protein disrupt virion assembly but do not abolish infectivity and cell-to-cell movement.
    Schmitz I; Rao AL
    Virology; 1998 Sep; 248(2):323-31. PubMed ID: 9721241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleotide sequence and genetic map of cowpea severe mosaic virus RNA 2 and comparisons with RNA 2 of other comoviruses.
    Chen X; Bruening G
    Virology; 1992 Apr; 187(2):682-92. PubMed ID: 1546463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for participation of RNA 1-encoded elicitor in Cowpea mosaic virus-mediated concurrent protection.
    Bruening G; Buzayan JM; Ferreiro C; Lim W
    Virology; 2000 Jan; 266(2):299-309. PubMed ID: 10639316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Specific encapsidation of nodavirus RNAs is mediated through the C terminus of capsid precursor protein alpha.
    Schneemann A; Marshall D
    J Virol; 1998 Nov; 72(11):8738-46. PubMed ID: 9765417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface-exposed C-terminal amino acids of the small coat protein of Cowpea mosaic virus are required for suppression of silencing.
    Cañizares MC; Taylor KM; Lomonossoff GP
    J Gen Virol; 2004 Nov; 85(Pt 11):3431-3435. PubMed ID: 15483261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-expression of the capsid proteins of Cowpea mosaic virus in insect cells leads to the formation of virus-like particles.
    Shanks M; Lomonossoff GP
    J Gen Virol; 2000 Dec; 81(Pt 12):3093-3097. PubMed ID: 11086140
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient generation of cowpea mosaic virus empty virus-like particles by the proteolytic processing of precursors in insect cells and plants.
    Saunders K; Sainsbury F; Lomonossoff GP
    Virology; 2009 Oct; 393(2):329-37. PubMed ID: 19733890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coalescence of the sites of cowpea mosaic virus RNA replication into a cytopathic structure.
    Carette JE; Gühl K; Wellink J; Van Kammen A
    J Virol; 2002 Jun; 76(12):6235-43. PubMed ID: 12021357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.