BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 10049867)

  • 1. Degradation of chloronitrobenzenes by a coculture of Pseudomonas putida and a Rhodococcus sp.
    Park HS; Lim SJ; Chang YK; Livingston AG; Kim HS
    Appl Environ Microbiol; 1999 Mar; 65(3):1083-91. PubMed ID: 10049867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioremediation of nitrobenzene-polluted sediments by Pseudomonas putida.
    Wang C; Li Y; Liu Z; Wang P
    Bull Environ Contam Toxicol; 2009 Dec; 83(6):865-8. PubMed ID: 19593543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cometabolic biotransformation of nitrobenzene by 3-nitrophenol degrading Pseudomonas putida 2NP8.
    Zhao JS; Ward OP
    Can J Microbiol; 2000 Jul; 46(7):643-52. PubMed ID: 10932358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of nitrobenzene contamination and of bioaugmentation on nitrification and ammonia-oxidizing bacteria in soil.
    Zhao S; Ramette A; Niu GL; Liu H; Zhou NY
    FEMS Microbiol Ecol; 2009 Nov; 70(2):159-67. PubMed ID: 19825042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradative capability of Pseudomonas putida on acetonitrile.
    Chapatwala KD; Babu GR; Dudley C; Williams R; Aremu K
    Appl Biochem Biotechnol; 1993; 39-40():655-66. PubMed ID: 8323268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The prospects of using bacteria of the genus Rhodococcus and microbial surfactants for the degradation of oil pollutants].
    Karpenko EV; Vil'danova-Martsishin RI; Shcheglova NS; Pirog TP; Voloshina IN
    Prikl Biokhim Mikrobiol; 2006; 42(2):175-9. PubMed ID: 16761570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioaugmentation of a 4-chloronitrobenzene contaminated soil with Pseudomonas putida ZWL73.
    Niu GL; Zhang JJ; Zhao S; Liu H; Boon N; Zhou NY
    Environ Pollut; 2009 Mar; 157(3):763-71. PubMed ID: 19108939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical features of the degradation of pollutants by Rhodococcus as a basis for contaminated wastewater and soil cleanup.
    Solyanikova I; Golovleva L
    Mikrobiologiia; 2011; 80(5):579-94. PubMed ID: 22168001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of Rhodococcus sp. NB5 capable of degrading a high concentration of nitrobenzene.
    Lin H; Chen XJ; Ding HT; Jia XM; Zhao YH
    J Basic Microbiol; 2011 Aug; 51(4):397-403. PubMed ID: 21298674
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation of buprofezin by Rhodococcus sp. strain YL-1 isolated from rice field soil.
    Li C; Zhang J; Wu ZG; Cao L; Yan X; Li SP
    J Agric Food Chem; 2012 Mar; 60(10):2531-7. PubMed ID: 22335821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biotransformation of trinitrotoluene (TNT) by Pseudomonas spp. isolated from a TNT-contaminated environment.
    Chien CC; Kao CM; Chen DY; Chen SC; Chen CC
    Environ Toxicol Chem; 2014 May; 33(5):1059-63. PubMed ID: 24549634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of an atrazine-degrading Rhodococcus sp. strain MB-P1 from contaminated soil.
    Fazlurrahman ; Batra M; Pandey J; Suri CR; Jain RK
    Lett Appl Microbiol; 2009 Dec; 49(6):721-9. PubMed ID: 19818008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Initial steps in the degradation of 3,4-dimethylbenzoic acid by Pseudomonas putida strain DMB.
    Baggi G; Bernasconi S; Zangrossi M
    FEMS Microbiol Lett; 1996 Apr; 137(2-3):129-34. PubMed ID: 8998974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective biodegradation of pentachloronitrobenzene by a novel strain Peudomonas putida QTH3 isolated from contaminated soil.
    Wang Y; Zhang X; Wang L; Wang C; Fan W; Wang M; Wang J
    Ecotoxicol Environ Saf; 2019 Oct; 182():109463. PubMed ID: 31351328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Naphthalene degradation via salicylate and gentisate by Rhodococcus sp. strain B4.
    Grund E; Denecke B; Eichenlaub R
    Appl Environ Microbiol; 1992 Jun; 58(6):1874-7. PubMed ID: 1622263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of the composition of the bacterial population and additional carbon source on the pathway and kinetics of degradation of endosulfan isomers.
    Singh SP; Guha S; Bose P
    Environ Sci Process Impacts; 2017 Jul; 19(7):964-974. PubMed ID: 28657620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isotope fractionation associated with the simultaneous biodegradation of multiple nitrophenol isomers by Pseudomonas putida B2.
    Wijker RS; Zeyer J; Hofstetter TB
    Environ Sci Process Impacts; 2017 May; 19(5):775-784. PubMed ID: 28470308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of o-chloronitrobenzene as the sole carbon and nitrogen sources by Pseudomonas putida OCNB-1.
    Wu H; Wei C; Wang Y; He Q; Liang S
    J Environ Sci (China); 2009; 21(1):89-95. PubMed ID: 19402405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of 5-nitroguaiacol by soil bacteria of the genus Rhodococcus.
    Navrátilová J; Tvrzová L; Neca J; Nemec M
    Folia Microbiol (Praha); 2004; 49(5):613-5. PubMed ID: 15702555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmid-mediated degradation of 4-chloronitrobenzene by newly isolated Pseudomonas putida strain ZWL73.
    Zhen D; Liu H; Wang SJ; Zhang JJ; Zhao F; Zhou NY
    Appl Microbiol Biotechnol; 2006 Oct; 72(4):797-803. PubMed ID: 16583229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.