These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 10050000)

  • 41. Molecular determinants of intracellular pH modulation of human Kv1.4 N-type inactivation.
    Padanilam BJ; Lu T; Hoshi T; Padanilam BA; Shibata EF; Lee HC
    Mol Pharmacol; 2002 Jul; 62(1):127-34. PubMed ID: 12065763
    [TBL] [Abstract][Full Text] [Related]  

  • 42. pH-dependent modulation of Kv1.3 inactivation: role of His399.
    Somodi S; Varga Z; Hajdu P; Starkus JG; Levy DI; Gáspár R; Panyi G
    Am J Physiol Cell Physiol; 2004 Oct; 287(4):C1067-76. PubMed ID: 15201143
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Recovery from C-type inactivation is modulated by extracellular potassium.
    Levy DI; Deutsch C
    Biophys J; 1996 Feb; 70(2):798-805. PubMed ID: 8789096
    [TBL] [Abstract][Full Text] [Related]  

  • 44. External pore collapse as an inactivation mechanism for Kv4.3 K+ channels.
    Eghbali M; Olcese R; Zarei MM; Toro L; Stefani E
    J Membr Biol; 2002 Jul; 188(1):73-86. PubMed ID: 12172648
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modulation of a cloned human A-type voltage-gated potassium channel (hKv1.4) by the protein tyrosine kinase inhibitor genistein.
    Zhang ZH; Wang Q
    Pflugers Arch; 2000 Sep; 440(5):784-92. PubMed ID: 11007322
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Glycosylation affects rat Kv1.1 potassium channel gating by a combined surface potential and cooperative subunit interaction mechanism.
    Watanabe I; Wang HG; Sutachan JJ; Zhu J; Recio-Pinto E; Thornhill WB
    J Physiol; 2003 Jul; 550(Pt 1):51-66. PubMed ID: 12879861
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Extracellular K+ activates a K(+)- and H(+)-permeable conductance in frog taste receptor cells.
    Kolesnikov SS; Margolskee RF
    J Physiol; 1998 Mar; 507 ( Pt 2)(Pt 2):415-32. PubMed ID: 9518702
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A site accessible to extracellular TEA+ and K+ influences intracellular Mg2+ block of cloned potassium channels.
    Ludewig U; Lorra C; Pongs O; Heinemann SH
    Eur Biophys J; 1993; 22(4):237-47. PubMed ID: 8253052
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Putative binding sites for benzocaine on a human cardiac cloned channel (Kv1.5).
    Caballero R; Moreno I; González T; Valenzuela C; Tamargo J; Delpón E
    Cardiovasc Res; 2002 Oct; 56(1):104-17. PubMed ID: 12237171
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Alterations in outward K(+) currents on removal of external Ca(2+) in human atrial myocytes.
    Bertaso F; Hendry BM; Donohoe P; James AF
    Biochem Biophys Res Commun; 2000 Jun; 273(1):10-6. PubMed ID: 10873555
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A rapidly activating and slowly inactivating potassium channel cloned from human heart. Functional analysis after stable mammalian cell culture expression.
    Snyders DJ; Tamkun MM; Bennett PB
    J Gen Physiol; 1993 Apr; 101(4):513-43. PubMed ID: 8505626
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Anomalous permeation of Na+ through a putative K+ channel in rat superior cervical ganglion neurones.
    Zhu Y; Ikeda SR
    J Physiol; 1993 Aug; 468():441-61. PubMed ID: 8254517
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Control of voltage-gated K+ channel permeability to NMDG+ by a residue at the outer pore.
    Wang Z; Wong NC; Cheng Y; Kehl SJ; Fedida D
    J Gen Physiol; 2009 Apr; 133(4):361-74. PubMed ID: 19332619
    [TBL] [Abstract][Full Text] [Related]  

  • 54. C-type inactivation controls recovery in a fast inactivating cardiac K+ channel (Kv1.4) expressed in Xenopus oocytes.
    Rasmusson RL; Morales MJ; Castellino RC; Zhang Y; Campbell DL; Strauss HC
    J Physiol; 1995 Dec; 489 ( Pt 3)(Pt 3):709-21. PubMed ID: 8788936
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of pore residues on permeation properties in the Kv2.1 potassium channel. Evidence for a selective functional interaction of K+ with the outer vestibule.
    Consiglio JF; Andalib P; Korn SJ
    J Gen Physiol; 2003 Feb; 121(2):111-24. PubMed ID: 12566539
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of permeant ions on voltage sensor function in the Kv2.1 potassium channel.
    Consiglio JF; Korn SJ
    J Gen Physiol; 2004 Apr; 123(4):387-400. PubMed ID: 15024041
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regulation of N- and C-type inactivation of Kv1.4 by pHo and K+: evidence for transmembrane communication.
    Li X; Bett GC; Jiang X; Bondarenko VE; Morales MJ; Rasmusson RL
    Am J Physiol Heart Circ Physiol; 2003 Jan; 284(1):H71-80. PubMed ID: 12388308
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Isolation of calcium current and its sensitivity to monovalent cations in dialysed ventricular cells of guinea-pig.
    Matsuda H; Noma A
    J Physiol; 1984 Dec; 357():553-73. PubMed ID: 6096535
    [TBL] [Abstract][Full Text] [Related]  

  • 59. On the mechanism by which 4-Aminopyridine occludes quinidine block of the cardiac K+ channel, hKv1.5.
    Chen FS; Fedida D
    J Gen Physiol; 1998 Apr; 111(4):539-54. PubMed ID: 9524137
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Functional identification of ion binding sites at the internal end of the pore in Shaker K+ channels.
    Thompson J; Begenisich T
    J Physiol; 2003 May; 549(Pt 1):107-20. PubMed ID: 12665608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.