BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 10050001)

  • 1. Gating current studies reveal both intra- and extracellular cation modulation of K+ channel deactivation.
    Wang Z; Zhang X; Fedida D
    J Physiol; 1999 Mar; 515 ( Pt 2)(Pt 2):331-9. PubMed ID: 10050001
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast inactivation in Shaker K+ channels. Properties of ionic and gating currents.
    Roux MJ; Olcese R; Toro L; Bezanilla F; Stefani E
    J Gen Physiol; 1998 May; 111(5):625-38. PubMed ID: 9565401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of alkali metal cations on slow inactivation of cardiac Na+ channels.
    Townsend C; Horn R
    J Gen Physiol; 1997 Jul; 110(1):23-33. PubMed ID: 9234168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anomalous effect of permeant ion concentration on peak open probability of cardiac Na+ channels.
    Townsend C; Hartmann HA; Horn R
    J Gen Physiol; 1997 Jul; 110(1):11-21. PubMed ID: 9234167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of ionic selectivity by a pore helix residue in the Kv1.2 channel.
    Chao CC; Huang CC; Kuo CS; Leung YM
    J Physiol Sci; 2010 Nov; 60(6):441-6. PubMed ID: 20842544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determinants of cation transport selectivity: Equilibrium binding and transport kinetics.
    Lockless SW
    J Gen Physiol; 2015 Jul; 146(1):3-13. PubMed ID: 26078056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational Studies Show How the H463R Mutation Turns hKv1.5 into an Inactivation State.
    Rahman RA; Zaman B; Khan MR; Islam MS; Rashid MH
    J Phys Chem B; 2024 Jan; 128(2):429-439. PubMed ID: 38179652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionic Current Saturation Enabled by Cation Gating Effect in Metal-Organic-Framework Membranes.
    Zhou H; Tang T; Hu R; Jiang Y; Yuan G; Wang H; Wang C; Hu S
    Nano Lett; 2024 May; 24(21):6296-6301. PubMed ID: 38747343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Components of gating charge movement and S4 voltage-sensor exposure during activation of hERG channels.
    Wang Z; Dou Y; Goodchild SJ; Es-Salah-Lamoureux Z; Fedida D
    J Gen Physiol; 2013 Apr; 141(4):431-43. PubMed ID: 23478995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Basis for allosteric open-state stabilization of voltage-gated potassium channels by intracellular cations.
    Goodchild SJ; Xu H; Es-Salah-Lamoureux Z; Ahern CA; Fedida D
    J Gen Physiol; 2012 Nov; 140(5):495-511. PubMed ID: 23071269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contributions of intracellular ions to kv channel voltage sensor dynamics.
    Goodchild SJ; Fedida D
    Front Pharmacol; 2012; 3():114. PubMed ID: 22719727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of voltage-gated K+ channel permeability to NMDG+ by a residue at the outer pore.
    Wang Z; Wong NC; Cheng Y; Kehl SJ; Fedida D
    J Gen Physiol; 2009 Apr; 133(4):361-74. PubMed ID: 19332619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voltage clamp fluorimetry reveals a novel outer pore instability in a mammalian voltage-gated potassium channel.
    Vaid M; Claydon TW; Rezazadeh S; Fedida D
    J Gen Physiol; 2008 Aug; 132(2):209-22. PubMed ID: 18625849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gating currents from a Kv3 subfamily potassium channel: charge movement and modification by BDS-II toxin.
    Wang Z; Robertson B; Fedida D
    J Physiol; 2007 Nov; 584(Pt 3):755-67. PubMed ID: 17855760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between pore occupancy and gating in BK potassium channels.
    Piskorowski RA; Aldrich RW
    J Gen Physiol; 2006 May; 127(5):557-76. PubMed ID: 16636204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rate-limiting reactions determining different activation kinetics of Kv1.2 and Kv2.1 channels.
    Scholle A; Dugarmaa S; Zimmer T; Leonhardt M; Koopmann R; Engeland B; Pongs O; Benndorf K
    J Membr Biol; 2004 Mar; 198(2):103-12. PubMed ID: 15138750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncoupling of gating charge movement and closure of the ion pore during recovery from inactivation in the Kv1.5 channel.
    Wang Z; Fedida D
    J Gen Physiol; 2002 Aug; 120(2):249-60. PubMed ID: 12149285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cations affect the rate of gating charge recovery in wild-type and W434F Shaker channels through a variety of mechanisms.
    Varga Z; Rayner MD; Starkus JG
    J Gen Physiol; 2002 May; 119(5):467-85. PubMed ID: 11981024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gating charge immobilization caused by the transition between inactivated states in the Kv1.5 channel.
    Wang Z; Fedida D
    Biophys J; 2001 Nov; 81(5):2614-27. PubMed ID: 11606275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of transient Na+ conductance by intra- and extracellular K+ in the human delayed rectifier K+ channel Kv1.5.
    Wang Z; Zhang X; Fedida D
    J Physiol; 2000 Mar; 523 Pt 3(Pt 3):575-91. PubMed ID: 10718739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.