These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 10050350)

  • 1. Evaluation of useful neutron flux for accelerator boron neutron capture therapy using the 7Li(p,n) reaction.
    Zimin S; Allen BJ
    Australas Phys Eng Sci Med; 1998 Dec; 21(4):193-9. PubMed ID: 10050350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of moderator thickness for an accelerator-based neutron irradiation facility for boron neutron capture therapy using the 7Li(p,n) reaction near threshold.
    Zimin S; Allen BJ
    Phys Med Biol; 2000 Jan; 45(1):59-67. PubMed ID: 10661583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing accelerator-based epithermal neutron beams for boron neutron capture therapy.
    Bleuel DL; Donahue RJ; Ludewigt BA; Vujic J
    Med Phys; 1998 Sep; 25(9):1725-34. PubMed ID: 9775379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurements of the neutron yields from 7Li(p,n)7Be reaction (thick target) with incident energies from 1.885 to 2.0 MeV.
    Yu W; Yue G; Han X; Chen J; Tian B
    Med Phys; 1998 Jul; 25(7 Pt 1):1222-4. PubMed ID: 9682210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Monte Carlo dosimetry-based evaluation of the 7Li(p,n)7Be reaction near threshold for accelerator boron neutron capture therapy.
    Lee CL; Zhou XL; Kudchadker RJ; Harmon F; Harker YD
    Med Phys; 2000 Jan; 27(1):192-202. PubMed ID: 10659757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What is the best proton energy for accelerator-based BNCT using the 7Li(p,n)7Be reaction?
    Allen DA; Beynon TD
    Med Phys; 2000 May; 27(5):1113-8. PubMed ID: 10841417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and construction of a neutron beam line for accelerator-based boron neutron capture synovectomy.
    Gierga DP; Yanch JC; Shefer RE
    Med Phys; 2000 Jan; 27(1):203-14. PubMed ID: 10659758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variations in lithium target thickness and proton energy stability for the near-threshold 7Li(p,n)7Be accelerator-based BNCT.
    Kobayashi T; Bengua G; Tanaka K; Nakagawa Y
    Phys Med Biol; 2007 Feb; 52(3):645-58. PubMed ID: 17228111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A design study for an accelerator-based epithermal neutron beam for BNCT.
    Allen DA; Beynon TD
    Phys Med Biol; 1995 May; 40(5):807-21. PubMed ID: 7652009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A neutron producing target for BINP accelerator-based neutron source.
    Bayanov B; Kashaeva E; Makarov A; Malyshkin G; Samarin S; Taskaev S
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S282-4. PubMed ID: 19376729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of an accelerator-based epithermal neutron source for neutron capture therapy.
    Kononov OE; Kononov VN; Bokhovko MV; Korobeynikov VV; Soloviev AN; Sysoev AS; Gulidov IA; Chu WT; Nigg DW
    Appl Radiat Isot; 2004 Nov; 61(5):1009-13. PubMed ID: 15308184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of boron neutron capture therapy used neutron source with protons bombarding a thick 9Be target.
    Yue G; Chen J; Song R
    Med Phys; 1997 Jun; 24(6):851-5. PubMed ID: 9198018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.
    Halfon S; Paul M; Arenshtam A; Berkovits D; Cohen D; Eliyahu I; Kijel D; Mardor I; Silverman I
    Appl Radiat Isot; 2014 Jun; 88():238-42. PubMed ID: 24387907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First neutron generation in the BINP accelerator based neutron source.
    Bayanov B; Burdakov A; Chudaev V; Ivanov A; Konstantinov S; Kuznetsov A; Makarov A; Malyshkin G; Mekler K; Sorokin I; Sulyaev Y; Taskaev S
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S285-7. PubMed ID: 19375928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of an accelerator-based neutron source for neutron capture therapy.
    Terlizzi R; Colonna N; Colangelo P; Maiorana A; Marrone S; RainĂ² A; Tagliente G; Variale V
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S292-5. PubMed ID: 19406649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overview of the IBA accelerator-based BNCT system.
    Forton E; Stichelbaut F; Cambriani A; Kleeven W; Ahlback J; Jongen Y
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S262-5. PubMed ID: 19376728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Are high energy proton beams ideal for AB-BNCT? A brief discussion from the viewpoint of fast neutron contamination control.
    Lee PY; Liu YH; Jiang SH
    Appl Radiat Isot; 2014 Jun; 88():206-10. PubMed ID: 24721900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerator-based epithermal neutron sources for boron neutron capture therapy of brain tumors.
    Blue TE; Yanch JC
    J Neurooncol; 2003; 62(1-2):19-31. PubMed ID: 12749700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of moderator assembly dimension for accelerator boron neutron capture therapy of brain tumors using 7Li(p, n) neutrons at proton energy of 2.5 MeV.
    Tanaka K; Kobayashi T; Bengua G; Nakagawa Y; Endo S; Hoshi M
    Med Phys; 2006 Jun; 33(6):1688-94. PubMed ID: 16872076
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An accelerator-based epithermal neutron beam design for BNCT and dosimetric evaluation using a voxel head phantom.
    Lee DJ; Han CY; Park SH; Kim JK
    Radiat Prot Dosimetry; 2004; 110(1-4):655-60. PubMed ID: 15353726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.