These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 10050350)
21. Optimal moderator materials at various proton energies considering photon dose rate after irradiation for an accelerator-driven ⁹Be(p, n) boron neutron capture therapy neutron source. Hashimoto Y; Hiraga F; Kiyanagi Y Appl Radiat Isot; 2015 Dec; 106():88-91. PubMed ID: 26272165 [TBL] [Abstract][Full Text] [Related]
22. Design for an accelerator-based orthogonal epithermal neutron beam for boron neutron capture therapy. Allen DA; Beynon TD; Green S Med Phys; 1999 Jan; 26(1):71-6. PubMed ID: 9949400 [TBL] [Abstract][Full Text] [Related]
23. Exploration of Adiabatic Resonance Crossing Through Neutron Activator Design for Thermal and Epithermal Neutron Formation in (99)Mo Production and BNCT Applications. Khorshidi A Cancer Biother Radiopharm; 2015 Oct; 30(8):317-29. PubMed ID: 26397967 [TBL] [Abstract][Full Text] [Related]
24. Accelerator-based epithermal neutron beam design for neutron capture therapy. Yanch JC; Zhou XL; Shefer RE; Klinkowstein RE Med Phys; 1992; 19(3):709-21. PubMed ID: 1324392 [TBL] [Abstract][Full Text] [Related]
25. Optimized beam shaping assembly for a 2.1-MeV proton-accelerator-based neutron source for boron neutron capture therapy. Torres-Sánchez P; Porras I; Ramos-Chernenko N; Arias de Saavedra F; Praena J Sci Rep; 2021 Apr; 11(1):7576. PubMed ID: 33828211 [TBL] [Abstract][Full Text] [Related]
26. A practical target system for accelerator-based BNCT which may effectively double the dose rate. Randers-Pehrson G; Brenner DJ Med Phys; 1998 Jun; 25(6):894-6. PubMed ID: 9650178 [TBL] [Abstract][Full Text] [Related]
27. Improvement of dose distribution in phantom by using epithermal neutron source based on the Be(p,n) reaction using a 30 MeV proton cyclotron accelerator. Tanaka H; Sakurai Y; Suzuki M; Takata T; Masunaga S; Kinashi Y; Kashino G; Liu Y; Mitsumoto T; Yajima S; Tsutsui H; Takada M; Maruhashi A; Ono K Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S258-61. PubMed ID: 19376720 [TBL] [Abstract][Full Text] [Related]
28. Dosimetric performance evaluation regarding proton beam incident angles of a lithium-based AB-BNCT design. Lee PY; Liu YH; Jiang SH Radiat Prot Dosimetry; 2014 Oct; 161(1-4):403-9. PubMed ID: 24493784 [TBL] [Abstract][Full Text] [Related]
29. Optimum design of a moderator system based on dose calculation for an accelerator driven Boron Neutron Capture Therapy. Inoue R; Hiraga F; Kiyanagi Y Appl Radiat Isot; 2014 Jun; 88():225-8. PubMed ID: 24440538 [TBL] [Abstract][Full Text] [Related]
30. Accelerator driven neutron source design via beryllium target and Khorshidi A J Cancer Res Ther; 2017; 13(3):456-465. PubMed ID: 28862209 [TBL] [Abstract][Full Text] [Related]
31. Study of accelerator-based epithermal neutron flux depending on Li and Be targets. Shim H; Park SH Appl Radiat Isot; 2024 Jun; 208():111298. PubMed ID: 38552359 [TBL] [Abstract][Full Text] [Related]
32. A shielding design for an accelerator-based neutron source for boron neutron capture therapy. Hawk AE; Blue TE; Woollard JE Appl Radiat Isot; 2004 Nov; 61(5):1027-31. PubMed ID: 15308187 [TBL] [Abstract][Full Text] [Related]
33. Feasibility study on epithermal neutron field for cyclotron-based boron neutron capture therapy. Yonai S; Aoki T; Nakamura T; Yashima H; Baba M; Yokobori H; Tahara Y Med Phys; 2003 Aug; 30(8):2021-30. PubMed ID: 12945968 [TBL] [Abstract][Full Text] [Related]
34. Phantoms with 10BF3 detectors for boron neutron capture therapy applications. Alburger DE; Raparia D; Zucker MS Med Phys; 1998 Sep; 25(9):1735-8. PubMed ID: 9775380 [TBL] [Abstract][Full Text] [Related]
36. Monte Carlo simulation-based design for an electron-linear-accelerator-driven subcritical neutron multiplier for boron neutron capture therapy. Hiraga F Appl Radiat Isot; 2018 Oct; 140():121-125. PubMed ID: 30015040 [TBL] [Abstract][Full Text] [Related]
37. Shielding design and dose assessment for accelerator based neutron capture therapy. Howard WB; Yanch JC Health Phys; 1995 May; 68(5):723-30. PubMed ID: 7730072 [TBL] [Abstract][Full Text] [Related]
38. The BSA modeling for the accelerator-based BNCT facility at INFN LNL for treating shallow skin melanoma. Ceballos C; Esposito J Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S274-7. PubMed ID: 19376724 [TBL] [Abstract][Full Text] [Related]
39. An optimized neutron-beam shaping assembly for accelerator-based BNCT. Burlon AA; Kreiner AJ; Valda AA; Minsky DM Appl Radiat Isot; 2004 Nov; 61(5):811-5. PubMed ID: 15308149 [TBL] [Abstract][Full Text] [Related]
40. An experimental study of the moderator assembly for a low-energy proton accelerator neutron irradiation facility for BNCT. Wang CK; Blue TE; Blue JW Basic Life Sci; 1990; 54():271-80. PubMed ID: 2176457 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]