BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 10051139)

  • 21. Different responses to acetylcholine in the presence of nitric oxide inhibitor in rat aortae and mesenteric arteries.
    Wu CC; Chen SJ; Yen MH
    Clin Exp Pharmacol Physiol; 1993 Jun; 20(6):405-12. PubMed ID: 8339465
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Potentiation of the hyporeactivity induced by in vivo endothelial injury in the rat carotid artery by chronic treatment with fish oil.
    Joly GA; Schini VB; Hughes H; Vanhoutte PM
    Br J Pharmacol; 1995 May; 115(2):255-60. PubMed ID: 7670727
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Endothelium-dependent, nitric oxide-mediated inhibition of angiotensin II-induced contractions in rabbit aorta.
    Zhang J; Van Meel JC; Pfaffendorf M; Zhang J; Van Zwieten PA
    Eur J Pharmacol; 1994 Sep; 262(3):247-53. PubMed ID: 7813589
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Light-dependent effects of zinc protoporphyrin IX on endothelium-dependent relaxation resistant to N omega-nitro-L-arginine.
    Zygmunt PM; Högestätt ED; Grundemar L
    Acta Physiol Scand; 1994 Oct; 152(2):137-43. PubMed ID: 7839858
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of endothelium in hyperpolarization of coronary smooth muscle by adenosine and its analogues.
    Olanrewaju HA; Hargittai PT; Lieberman EA; Mustafa SJ
    J Cardiovasc Pharmacol; 1995 Feb; 25(2):234-9. PubMed ID: 7752649
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of membrane potential in endothelium-dependent relaxation of guinea-pig coronary arterial smooth muscle.
    Parkington HC; Tonta MA; Coleman HA; Tare M
    J Physiol; 1995 Apr; 484 ( Pt 2)(Pt 2):469-80. PubMed ID: 7541469
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stretch revealed three components in the hyperpolarization of guinea-pig coronary artery in response to acetylcholine.
    Parkington HC; Tare M; Tonta MA; Coleman HA
    J Physiol; 1993 Jun; 465():459-76. PubMed ID: 7693921
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of endothelium-derived relaxing factor on vascular reactivity in endotoxin-induced shock.
    Yen MH; Chen SJ; Wu CC
    Chin J Physiol; 1993; 36(4):225-31. PubMed ID: 8020337
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Age-related changes in endothelium-dependent hyperpolarization in the rat mesenteric artery.
    Fujii K; Ohmori S; Tominaga M; Abe I; Takata Y; Ohya Y; Kobayashi K; Fujishima M
    Am J Physiol; 1993 Aug; 265(2 Pt 2):H509-16. PubMed ID: 8368354
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nitric oxide hyperpolarizes rabbit mesenteric arteries via ATP-sensitive potassium channels.
    Murphy ME; Brayden JE
    J Physiol; 1995 Jul; 486 ( Pt 1)(Pt 1):47-58. PubMed ID: 7562643
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced role of potassium channels in relaxations to acetylcholine in hypercholesterolemic rabbit carotid artery.
    Najibi S; Cowan CL; Palacino JJ; Cohen RA
    Am J Physiol; 1994 May; 266(5 Pt 2):H2061-7. PubMed ID: 7515589
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contribution of both nitric oxide and a change in membrane potential to acetylcholine-induced relaxation in the rat small mesenteric artery.
    Waldron GJ; Garland CJ
    Br J Pharmacol; 1994 Jul; 112(3):831-6. PubMed ID: 7921609
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multiple pathways underlying endothelium-dependent relaxation in the rabbit isolated femoral artery.
    Plane F; Pearson T; Garland CJ
    Br J Pharmacol; 1995 May; 115(1):31-8. PubMed ID: 7647981
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Different mechanisms of hypoxic relaxation in canine coronary arteries and rat abdominal aortas.
    Grser T; Rubanyi GM
    J Cardiovasc Pharmacol; 1992; 20 Suppl 12():S117-9. PubMed ID: 1282944
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nebivolol induces endothelium-dependent relaxations of canine coronary arteries.
    Gao YS; Nagao T; Bond RA; Janssens WJ; Vanhoutte PM
    J Cardiovasc Pharmacol; 1991 Jun; 17(6):964-9. PubMed ID: 1714022
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Age-dependent decrease in endothelium-dependent hyperpolarizations to endothelin-3 in the rat mesenteric artery.
    Nakashima M; Vanhoutte PM
    J Cardiovasc Pharmacol; 1993; 22 Suppl 8():S352-4. PubMed ID: 7509985
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Induction of bradykinin B1 receptor-mediated relaxation in the isolated rabbit carotid artery.
    Pruneau D; Bélichard P
    Eur J Pharmacol; 1993 Aug; 239(1-3):63-7. PubMed ID: 8223915
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitroarginine-sensitive and -insensitive components of the endothelium-dependent relaxation in the guinea-pig carotid artery.
    Suzuki H; Chen G; Yamamoto Y; Miwa K
    Jpn J Physiol; 1992; 42(2):335-47. PubMed ID: 1434097
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Converting-enzyme inhibitors potentiate bradykinin-induced relaxation in vitro.
    Félétou M; Germain M; Teisseire B
    Am J Physiol; 1992 Mar; 262(3 Pt 2):H839-45. PubMed ID: 1558194
    [TBL] [Abstract][Full Text] [Related]  

  • 40. N omega-nitro-L-arginine blocks the second phase but not the first phase of the endothelium-dependent relaxations induced by substance P in isolated rings of pig carotid artery.
    Fiscus RR; Gross DR; Hao H; Wang X; Arden WA; Maley RH; Salley RK
    J Cardiovasc Pharmacol; 1992; 20 Suppl 12():S105-8. PubMed ID: 1282940
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.