These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 10051386)
1. The origin of red algae and cryptomonad nucleomorphs: A comparative phylogeny based on small and large subunit rRNA sequences of Palmaria palmata, Gracilaria verrucosa, and the Guillardia theta nucleomorph. Van der Auwera G; Hofmann CJ; De Rijk P; De Wachter R Mol Phylogenet Evol; 1998 Dec; 10(3):333-42. PubMed ID: 10051386 [TBL] [Abstract][Full Text] [Related]
2. The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids. Nozaki H; Matsuzaki M; Takahara M; Misumi O; Kuroiwa H; Hasegawa M; Shin-i T; Kohara Y; Ogasawara N; Kuroiwa T J Mol Evol; 2003 Apr; 56(4):485-97. PubMed ID: 12664168 [TBL] [Abstract][Full Text] [Related]
3. Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages. Patron NJ; Inagaki Y; Keeling PJ Curr Biol; 2007 May; 17(10):887-91. PubMed ID: 17462896 [TBL] [Abstract][Full Text] [Related]
4. Phylogenetic analysis of tufA sequences indicates a cyanobacterial origin of all plastids. Delwiche CF; Kuhsel M; Palmer JD Mol Phylogenet Evol; 1995 Jun; 4(2):110-28. PubMed ID: 7663757 [TBL] [Abstract][Full Text] [Related]
5. Proceedings of the SMBE Tri-National Young Investigators' Workshop 2005. Insight into the diversity and evolution of the cryptomonad nucleomorph genome. Lane CE; Khan H; MacKinnon M; Fong A; Theophilou S; Archibald JM; Mol Biol Evol; 2006 May; 23(5):856-65. PubMed ID: 16306383 [TBL] [Abstract][Full Text] [Related]
6. Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor. Deusch O; Landan G; Roettger M; Gruenheit N; Kowallik KV; Allen JF; Martin W; Dagan T Mol Biol Evol; 2008 Apr; 25(4):748-61. PubMed ID: 18222943 [TBL] [Abstract][Full Text] [Related]
7. Cryptomonad algae are evolutionary chimaeras of two phylogenetically distinct unicellular eukaryotes. Douglas SE; Murphy CA; Spencer DF; Gray MW Nature; 1991 Mar; 350(6314):148-51. PubMed ID: 2005963 [TBL] [Abstract][Full Text] [Related]
8. Evolution of the glucose-6-phosphate isomerase: the plasticity of primary metabolism in photosynthetic eukaryotes. Grauvogel C; Brinkmann H; Petersen J Mol Biol Evol; 2007 Aug; 24(8):1611-21. PubMed ID: 17443012 [TBL] [Abstract][Full Text] [Related]
9. The highly reduced genome of an enslaved algal nucleus. Douglas S; Zauner S; Fraunholz M; Beaton M; Penny S; Deng LT; Wu X; Reith M; Cavalier-Smith T; Maier UG Nature; 2001 Apr; 410(6832):1091-6. PubMed ID: 11323671 [TBL] [Abstract][Full Text] [Related]
10. The origin of red algae and the evolution of chloroplasts. Moreira D; Le Guyader H; Philippe H Nature; 2000 May; 405(6782):69-72. PubMed ID: 10811219 [TBL] [Abstract][Full Text] [Related]
11. Novel nucleomorph genome architecture in the cryptomonad genus hemiselmis. Lane CE; Archibald JM J Eukaryot Microbiol; 2006; 53(6):515-21. PubMed ID: 17123416 [TBL] [Abstract][Full Text] [Related]
12. Phylogeographic analysis of the red seaweed Palmaria palmata reveals a Pleistocene marine glacial refugium in the English Channel. Provan J; Wattier RA; Maggs CA Mol Ecol; 2005 Mar; 14(3):793-803. PubMed ID: 15723670 [TBL] [Abstract][Full Text] [Related]
13. Complete nucleomorph genome sequence of the nonphotosynthetic alga Cryptomonas paramecium reveals a core nucleomorph gene set. Tanifuji G; Onodera NT; Wheeler TJ; Dlutek M; Donaher N; Archibald JM Genome Biol Evol; 2011; 3():44-54. PubMed ID: 21147880 [TBL] [Abstract][Full Text] [Related]
15. Molecular chaperones encoded by a reduced nucleus: the cryptomonad nucleomorph. Archibald JM; Cavalier-Smith T; Maier U; Douglas S J Mol Evol; 2001 Jun; 52(6):490-501. PubMed ID: 11443352 [TBL] [Abstract][Full Text] [Related]
16. Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes. ObornĂk M; Green BR Mol Biol Evol; 2005 Dec; 22(12):2343-53. PubMed ID: 16093570 [TBL] [Abstract][Full Text] [Related]
17. Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates. Li S; Nosenko T; Hackett JD; Bhattacharya D Mol Biol Evol; 2006 Mar; 23(3):663-74. PubMed ID: 16357039 [TBL] [Abstract][Full Text] [Related]
18. Chimeric plastid proteome in the Florida "red tide" dinoflagellate Karenia brevis. Nosenko T; Lidie KL; Van Dolah FM; Lindquist E; Cheng JF; Bhattacharya D Mol Biol Evol; 2006 Nov; 23(11):2026-38. PubMed ID: 16877498 [TBL] [Abstract][Full Text] [Related]
19. An early origin of plastids within the cyanobacterial divergence is suggested by evolutionary trees based on complete 16S rRNA sequences. Nelissen B; Van de Peer Y; Wilmotte A; De Wachter R Mol Biol Evol; 1995 Nov; 12(6):1166-73. PubMed ID: 8524048 [TBL] [Abstract][Full Text] [Related]
20. Nuclear and nucleomorph SSU rDNA phylogeny in the Cryptophyta and the evolution of cryptophyte diversity. Hoef-Emden K; Marin B; Melkonian M J Mol Evol; 2002 Aug; 55(2):161-79. PubMed ID: 12107593 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]