BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 10051558)

  • 1. Unexpected crucial role of residue 225 in serine proteases.
    Guinto ER; Caccia S; Rose T; Fütterer K; Waksman G; Di Cera E
    Proc Natl Acad Sci U S A; 1999 Mar; 96(5):1852-7. PubMed ID: 10051558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Residue 225 determines the Na(+)-induced allosteric regulation of catalytic activity in serine proteases.
    Dang QD; Di Cera E
    Proc Natl Acad Sci U S A; 1996 Oct; 93(20):10653-6. PubMed ID: 8855234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of bovine duodenase, a serine protease, with dual trypsin and chymotrypsin-like specificities.
    Pletnev VZ; Zamolodchikova TS; Pangborn WA; Duax WL
    Proteins; 2000 Oct; 41(1):8-16. PubMed ID: 10944388
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energetic and structural consequences of perturbing Gly-193 in the oxyanion hole of serine proteases.
    Bobofchak KM; Pineda AO; Mathews FS; Di Cera E
    J Biol Chem; 2005 Jul; 280(27):25644-50. PubMed ID: 15890651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the structures of the cyclotheonamide A complexes of human alpha-thrombin and bovine beta-trypsin.
    Ganesh V; Lee AY; Clardy J; Tulinsky A
    Protein Sci; 1996 May; 5(5):825-35. PubMed ID: 8732754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping the S' subsites of serine proteases using acyl transfer to mixtures of peptide nucleophiles.
    Schellenberger V; Turck CW; Hedstrom L; Rutter WJ
    Biochemistry; 1993 Apr; 32(16):4349-53. PubMed ID: 8476865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of P225 and the C136-C201 disulfide bond in tissue plasminogen activator.
    Vindigni A; Di Cera E
    Protein Sci; 1998 Aug; 7(8):1728-37. PubMed ID: 10082369
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A despecialization step underlying evolution of a family of serine proteases.
    Wouters MA; Liu K; Riek P; Husain A
    Mol Cell; 2003 Aug; 12(2):343-54. PubMed ID: 14536074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conversion of trypsin into a Na(+)-activated enzyme.
    Page MJ; Bleackley MR; Wong S; MacGillivray RT; Di Cera E
    Biochemistry; 2006 Mar; 45(9):2987-93. PubMed ID: 16503653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. New structural motifs on the chymotrypsin fold and their potential roles in complement factor B.
    Jing H; Xu Y; Carson M; Moore D; Macon KJ; Volanakis JE; Narayana SV
    EMBO J; 2000 Jan; 19(2):164-73. PubMed ID: 10637221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of the catalytic domain of human complement c1s: a serine protease with a handle.
    Gaboriaud C; Rossi V; Bally I; Arlaud GJ; Fontecilla-Camps JC
    EMBO J; 2000 Apr; 19(8):1755-65. PubMed ID: 10775260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural features of a snake venom thrombin-like enzyme: thrombin and trypsin on a single catalytic platform?
    Castro HC; Silva DM; Craik C; Zingali RB
    Biochim Biophys Acta; 2001 Jun; 1547(2):183-95. PubMed ID: 11410274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ala226 to Gly and Ser189 to Asp mutations convert rat chymotrypsin B to a trypsin-like protease.
    Jelinek B; Antal J; Venekei I; Gráf L
    Protein Eng Des Sel; 2004 Feb; 17(2):127-31. PubMed ID: 15047908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three dimensional structures of S189D chymotrypsin and D189S trypsin mutants: the effect of polarity at site 189 on a protease-specific stabilization of the substrate-binding site.
    Szabó E; Venekei I; Böcskei Z; Náray-Szabó G; Gráf L
    J Mol Biol; 2003 Aug; 331(5):1121-30. PubMed ID: 12927546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Why Ser and not Thr brokers catalysis in the trypsin fold.
    Pelc LA; Chen Z; Gohara DW; Vogt AD; Pozzi N; Di Cera E
    Biochemistry; 2015 Feb; 54(7):1457-64. PubMed ID: 25664608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A structural model for the prostate disease marker, human prostate-specific antigen.
    Villoutreix BO; Getzoff ED; Griffin JH
    Protein Sci; 1994 Nov; 3(11):2033-44. PubMed ID: 7535613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional and structural characterization of Vibrio cholerae extracellular serine protease B, VesB.
    Gadwal S; Korotkov KV; Delarosa JR; Hol WG; Sandkvist M
    J Biol Chem; 2014 Mar; 289(12):8288-98. PubMed ID: 24459146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of Tyr71 in Streptomyces trypsin on the recognition mechanism of structural protein substrates.
    Uesugi Y; Usuki H; Iwabuchi M; Hatanaka T
    FEBS J; 2009 Oct; 276(19):5634-46. PubMed ID: 19725878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interscaffolding additivity: binding of P1 variants of bovine pancreatic trypsin inhibitor to four serine proteases.
    Krowarsch D; Dadlez M; Buczek O; Krokoszynska I; Smalas AO; Otlewski J
    J Mol Biol; 1999 May; 289(1):175-86. PubMed ID: 10339415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The crystal structure of a trypsin-like mutant chymotrypsin: the role of position 226 in the activity and specificity of S189D chymotrypsin.
    Jelinek B; Katona G; Fodor K; Venekei I; Gráf L
    Protein J; 2008 Feb; 27(2):79-87. PubMed ID: 17805946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.