BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 10052480)

  • 61. Treatment with the arginase inhibitor N(omega)-hydroxy-nor-L-arginine improves vascular function and lowers blood pressure in adult spontaneously hypertensive rat.
    Bagnost T; Berthelot A; Bouhaddi M; Laurant P; André C; Guillaume Y; Demougeot C
    J Hypertens; 2008 Jun; 26(6):1110-8. PubMed ID: 18475148
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Differential contribution of endothelium-derived relaxing factors to vascular reactivity in conduit and resistance arteries from normotensive and hypertensive rats.
    Jiang J; Zheng JP; Li Y; Gan Z; Jiang Y; Huang D; Li H; Liu Z; Ke Y
    Clin Exp Hypertens; 2016; 38(4):393-8. PubMed ID: 27159544
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Evidence against potassium as an endothelium-derived hyperpolarizing factor in rat mesenteric small arteries.
    Lacy PS; Pilkington G; Hanvesakul R; Fish HJ; Boyle JP; Thurston H
    Br J Pharmacol; 2000 Feb; 129(3):605-11. PubMed ID: 10711361
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Enhanced endothelium-independent vasodilator response to calcitonin gene-related peptide in hypertensive rats.
    Tomobe YI; Ishikawa T; Goto K
    Eur J Pharmacol; 1998 Jun; 351(3):351-5. PubMed ID: 9721027
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Mesenteric arterial function in vitro in three models of experimental hypertension.
    Wu X; Mäkynen H; Kähönen M; Arvola P; Pörsti I
    J Hypertens; 1996 Mar; 14(3):365-72. PubMed ID: 8723991
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Experimental study of blood pressure and its impact on spontaneous hypertension in rats with Xin Mai Jia.
    Jing Y; Hu J; Zhao J; Yang J; Huang N; Song P; Xu J; Zhang M; Li P; Yin Y
    Biomed Pharmacother; 2019 Apr; 112():108689. PubMed ID: 30802825
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Impaired endothelium-dependent relaxation in large, but not small arteries in rats after coronary ligation.
    Prior DL; Jennings GL; Arnold P; Du XJ; Chin-Dusting JP
    Eur J Pharmacol; 1998 Aug; 355(2-3):167-74. PubMed ID: 9760031
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Renal sensitivity to endothelium-derived-relaxing-factor-mediated vasodilatation in the spontaneously hypertensive rat.
    Burton GA; Haylor J; de Jonge A
    Clin Sci (Lond); 1991 May; 80(5):435-41. PubMed ID: 1851682
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Endothelium-dependent vasodilator responses of the isolated mesenteric bed are preserved in long-term streptozotocin diabetic rats.
    Furman BL; Sneddon P
    Eur J Pharmacol; 1993 Feb; 232(1):29-34. PubMed ID: 8458394
    [TBL] [Abstract][Full Text] [Related]  

  • 70. High flaxseed (linseed) diet restores endothelial function in the mesenteric arterial bed of spontaneously hypertensive rats.
    Talom RT; Judd SA; McIntosh DD; McNeill JR
    Life Sci; 1999; 64(16):1415-25. PubMed ID: 10321721
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Mechanisms of desensitization of vasodilatation induced by platelet-activating factor in hypertensive rats.
    Kamata K; Numazawa T; Kasuya Y
    Eur J Pharmacol; 1996 Apr; 301(1-3):121-8. PubMed ID: 8773455
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Nitric oxide synthase upregulation and the predelivery blood pressure decrease in spontaneously hypertensive rats.
    Gompf H; Luft FC; Morano I
    J Hypertens; 2002 Feb; 20(2):255-61. PubMed ID: 11821710
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Changes in extracellular Ca2+ over a physiologic concentration range differentially modulate reactivity of resistance arteries of spontaneously hypertensive and normotensive rats.
    Li J; Ehrenfried LK; Bukoski RD
    Clin Exp Hypertens; 1993 Sep; 15(5):849-66. PubMed ID: 8401418
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Endothelium-dependent vasodilation in the uvea of hypertensive and normotensive rats.
    Granstam E; Granstam SO; Fellström B; Lind L
    Curr Eye Res; 1998 Feb; 17(2):189-96. PubMed ID: 9523098
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Changes of vascular smooth muscle reactivity in hypertensive rats.
    Lograno MD; Daniele E; Galli C
    Pharmacol Res; 1989; 21(6):719-28. PubMed ID: 2626398
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Disparate effects of carvedilol versus metoprolol treatment of stroke-prone spontaneously hypertensive rats on endothelial function of resistance arteries.
    Intengan HD; Schiffrin EL
    J Cardiovasc Pharmacol; 2000 May; 35(5):763-8. PubMed ID: 10813379
    [TBL] [Abstract][Full Text] [Related]  

  • 77. High calcium diet augments vascular potassium relaxation in hypertensive rats.
    Pörsti I; Arvola P; Wuorela H; Vapaatalo H
    Hypertension; 1992 Jan; 19(1):85-92. PubMed ID: 1730443
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Early endothelial dysfunction following renal mass reduction in rats.
    Benchetrit S; Green J; Katz D; Bernheim J; Rathaus M
    Eur J Clin Invest; 2003 Jan; 33(1):26-33. PubMed ID: 12492449
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effect of destruction of the vascular endothelium upon pressure/flow relations and endothelium-dependent vasodilatation in resistance beds of spontaneously hypertensive rats.
    Randall MD; Thomas GR; Hiley CR
    Clin Sci (Lond); 1991 May; 80(5):463-9. PubMed ID: 1851686
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Daily exercise enhances acetylcholine-induced dilation in mesenteric and hindlimb vasculature of hypertensive rats.
    Chen Y; Collins HL; DiCarlo SE
    Clin Exp Hypertens; 1999 May; 21(4):353-76. PubMed ID: 10369380
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.