These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 10052612)

  • 1. A model for parallel triple helix formation by RecA: single-single association with a homologous duplex via the minor groove.
    Bertucat G; Lavery R; Prévost C
    J Biomol Struct Dyn; 1998 Dec; 16(3):535-46. PubMed ID: 10052612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A molecular model for RecA-promoted strand exchange via parallel triple-stranded helices.
    Bertucat G; Lavery R; Prévost C
    Biophys J; 1999 Sep; 77(3):1562-76. PubMed ID: 10465767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Mechanism for RecA-Promoted Sequence Homology Recognition and Strand Exchange Between Single-Stranded DNA and Duplex DNA, via Triple-Helical Intermediates.
    Bertucat G; Lavery R; Prévost C
    J Biomol Struct Dyn; 2000; 17 Suppl 1():147-53. PubMed ID: 22607418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct evaluation of a kinetic model for RecA-mediated DNA-strand exchange: the importance of nucleic acid dynamics and entropy during homologous genetic recombination.
    Xiao J; Lee AM; Singleton SF
    Chembiochem; 2006 Aug; 7(8):1265-78. PubMed ID: 16847846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA strand exchange mediated by the Escherichia coli RecA protein initiates in the minor groove of double-stranded DNA.
    Zhou X; Adzuma K
    Biochemistry; 1997 Apr; 36(15):4650-61. PubMed ID: 9109676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA stretching and compression: large-scale simulations of double helical structures.
    Kosikov KM; Gorin AA; Zhurkin VB; Olson WK
    J Mol Biol; 1999 Jun; 289(5):1301-26. PubMed ID: 10373369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radioprobing of a RecA-three-stranded DNA complex with iodine 125: evidence for recognition of homology in the major groove of the target duplex.
    Malkov VA; Panyutin IG; Neumann RD; Zhurkin VB; Camerini-Otero RD
    J Mol Biol; 2000 Jun; 299(3):629-40. PubMed ID: 10835273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three mechanistic steps detected by FRET after presynaptic filament formation in homologous recombination. ATP hydrolysis required for release of oligonucleotide heteroduplex product from RecA.
    Gumbs OH; Shaner SL
    Biochemistry; 1998 Aug; 37(33):11692-706. PubMed ID: 9709007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Origins of sequence selectivity in homologous genetic recombination: insights from rapid kinetic probing of RecA-mediated DNA strand exchange.
    Lee AM; Xiao J; Singleton SF
    J Mol Biol; 2006 Jul; 360(2):343-59. PubMed ID: 16756994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the DNA binding activity of stable RecA-DNA complexes. Interaction between the two DNA binding sites within RecA helical filaments.
    Müller B; Koller T; Stasiak A
    J Mol Biol; 1990 Mar; 212(1):97-112. PubMed ID: 2319601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A single 2'-hydroxyl group converts B-DNA to A-DNA. Crystal structure of the DNA-RNA chimeric decamer duplex d(CCGGC)r(G)d(CCGG) with a novel intermolecular G-C base-paired quadruplet.
    Ban C; Ramakrishnan B; Sundaralingam M
    J Mol Biol; 1994 Feb; 236(1):275-85. PubMed ID: 7508984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RecA protein reinitiates strand exchange on isolated protein-free DNA intermediates. An ADP-resistant process.
    Rao BJ; Jwang B; Radding CM
    J Mol Biol; 1990 Jun; 213(4):789-809. PubMed ID: 2141651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational flexibility of RecA protein filament: transitions between compressed and stretched states.
    Petukhov M; Lebedev D; Shalguev V; Islamov A; Kuklin A; Lanzov V; Isaev-Ivanov V
    Proteins; 2006 Nov; 65(2):296-304. PubMed ID: 16909421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RecA protein dynamics in the interior of RecA nucleoprotein filaments.
    Shan Q; Cox MM
    J Mol Biol; 1996 Apr; 257(4):756-74. PubMed ID: 8636980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homologous recognition and triplex formation promoted by RecA protein between duplex oligonucleotides and single-stranded DNA.
    Rao BJ; Chiu SK; Radding CM
    J Mol Biol; 1993 Jan; 229(2):328-43. PubMed ID: 8381491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RecA protein of Mycobacterium tuberculosis possesses pH-dependent homologous DNA pairing and strand exchange activities: implications for allele exchange in mycobacteria.
    Vaze MB; Muniyappa K
    Biochemistry; 1999 Mar; 38(10):3175-86. PubMed ID: 10074373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homologous genetic recombination as an intrinsic dynamic property of a DNA structure induced by RecA/Rad51-family proteins: a possible advantage of DNA over RNA as genomic material.
    Shibata T; Nishinaka T; Mikawa T; Aihara H; Kurumizaka H; Yokoyama S; Ito Y
    Proc Natl Acad Sci U S A; 2001 Jul; 98(15):8425-32. PubMed ID: 11459985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A parallel DNA triplex as a model for the intermediate in homologous recombination.
    Zhurkin VB; Raghunathan G; Ulyanov NB; Camerini-Otero RD; Jernigan RL
    J Mol Biol; 1994 Jun; 239(2):181-200. PubMed ID: 8196053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RecA protein mediates homologous recognition via non-Watson-Crick bonds in base triplets.
    Rao BJ; Radding CM
    Philos Trans R Soc Lond B Biol Sci; 1995 Jan; 347(1319):5-12. PubMed ID: 7746854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution structure of the calicheamicin gamma 1I-DNA complex.
    Kumar RA; Ikemoto N; Patel DJ
    J Mol Biol; 1997 Jan; 265(2):187-201. PubMed ID: 9020982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.