These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 10052917)

  • 1. Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints.
    Lu TW; O'Connor JJ
    J Biomech; 1999 Feb; 32(2):129-34. PubMed ID: 10052917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global sensitivity analysis of the joint kinematics during gait to the parameters of a lower limb multi-body model.
    El Habachi A; Moissenet F; Duprey S; Cheze L; Dumas R
    Med Biol Eng Comput; 2015 Jul; 53(7):655-67. PubMed ID: 25783762
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the global optimisation method within the upper limb kinematics analysis.
    Roux E; Bouilland S; Godillon-Maquinghen AP; Bouttens D
    J Biomech; 2002 Sep; 35(9):1279-83. PubMed ID: 12163317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Marker-based reconstruction of the kinematics of a chain of segments: a new method that incorporates joint kinematic constraints.
    Klous M; Klous S
    J Biomech Eng; 2010 Jul; 132(7):074501. PubMed ID: 20590294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kalman smoothing improves the estimation of joint kinematics and kinetics in marker-based human gait analysis.
    De Groote F; De Laet T; Jonkers I; De Schutter J
    J Biomech; 2008 Dec; 41(16):3390-8. PubMed ID: 19026414
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of joint constraints on lower limb kinematics estimation from skin markers using global optimization.
    Duprey S; Cheze L; Dumas R
    J Biomech; 2010 Oct; 43(14):2858-62. PubMed ID: 20701914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new method for estimating the axis of rotation and the center of rotation.
    Halvorsen K; Lesser M; Lundberg A
    J Biomech; 1999 Nov; 32(11):1221-7. PubMed ID: 10541073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Are patient-specific joint and inertial parameters necessary for accurate inverse dynamics analyses of gait?
    Reinbolt JA; Haftka RT; Chmielewski TL; Fregly BJ
    IEEE Trans Biomed Eng; 2007 May; 54(5):782-93. PubMed ID: 17518274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Do kinematic models reduce the effects of soft tissue artefacts in skin marker-based motion analysis? An in vivo study of knee kinematics.
    Andersen MS; Benoit DL; Damsgaard M; Ramsey DK; Rasmussen J
    J Biomech; 2010 Jan; 43(2):268-73. PubMed ID: 19879581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of toe marker placement error on joint kinematics and muscle forces using OpenSim gait simulation.
    Xu H; Merryweather A; Bloswick D; Mao Q; Wang T
    Biomed Mater Eng; 2015; 26 Suppl 1():S685-91. PubMed ID: 26406064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinematics estimation of straddled movements on high bar from a limited number of skin markers using a chain model.
    Begon M; Wieber PB; Yeadon MR
    J Biomech; 2008; 41(3):581-6. PubMed ID: 18036597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of functional methods of joint centre determination for quasi-planar movement.
    Meng L; Childs C; Buis A
    PLoS One; 2019; 14(1):e0210807. PubMed ID: 30653613
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tracking the motion of hidden segments using kinematic constraints and Kalman filtering.
    Halvorsen K; Johnston C; Back W; Stokes V; Lanshammar H
    J Biomech Eng; 2008 Feb; 130(1):011012. PubMed ID: 18298188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of hierarchical and six degrees-of-freedom marker sets in analyzing gait kinematics.
    Schmitz A; Buczek FL; Bruening D; Rainbow MJ; Cooney K; Thelen D
    Comput Methods Biomech Biomed Engin; 2016; 19(2):199-207. PubMed ID: 25800981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of different calculations of three-dimensional joint kinematics from video-based system data.
    Chéze L
    J Biomech; 2000 Dec; 33(12):1695-9. PubMed ID: 11006395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The SCoRE residual: a quality index to assess the accuracy of joint estimations.
    Ehrig RM; Heller MO; Kratzenstein S; Duda GN; Trepczynski A; Taylor WR
    J Biomech; 2011 Apr; 44(7):1400-4. PubMed ID: 21334628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benchmarking of a full-body inertial motion capture system for clinical gait analysis.
    Cloete T; Scheffer C
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4579-82. PubMed ID: 19163735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of skin movement on the analysis of hindlimb kinematics during treadmill locomotion in rats.
    Filipe VM; Pereira JE; Costa LM; Maurício AC; Couto PA; Melo-Pinto P; Varejão AS
    J Neurosci Methods; 2006 May; 153(1):55-61. PubMed ID: 16337686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematic models of lower limb joints for musculo-skeletal modelling and optimization in gait analysis.
    Leardini A; Belvedere C; Nardini F; Sancisi N; Conconi M; Parenti-Castelli V
    J Biomech; 2017 Sep; 62():77-86. PubMed ID: 28601242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Future trends in the use of X-ray fluoroscopy for the measurement and modelling of joint motion.
    Ackland DC; Keynejad F; Pandy MG
    Proc Inst Mech Eng H; 2011 Dec; 225(12):1136-48. PubMed ID: 22320053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.