These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 10052917)

  • 21. Model-based approach for human kinematics reconstruction from markerless and marker-based motion analysis systems.
    Sholukha V; Bonnechere B; Salvia P; Moiseev F; Rooze M; Van Sint Jan S
    J Biomech; 2013 Sep; 46(14):2363-71. PubMed ID: 23972432
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determination of patient-specific multi-joint kinematic models through two-level optimization.
    Reinbolt JA; Schutte JF; Fregly BJ; Koh BI; Haftka RT; George AD; Mitchell KH
    J Biomech; 2005 Mar; 38(3):621-6. PubMed ID: 15652563
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative assessment of knee joint models used in multi-body kinematics optimisation for soft tissue artefact compensation.
    Richard V; Cappozzo A; Dumas R
    J Biomech; 2017 Sep; 62():95-101. PubMed ID: 28237187
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Joint kinematic calculation based on clinical direct kinematic versus inverse kinematic gait models.
    Kainz H; Modenese L; Lloyd DG; Maine S; Walsh HPJ; Carty CP
    J Biomech; 2016 Jun; 49(9):1658-1669. PubMed ID: 27139005
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of kinematic and kinetic parameters calculated using a cluster-based model and Vicon's plug-in gait.
    Duffell LD; Hope N; McGregor AH
    Proc Inst Mech Eng H; 2014 Feb; 228(2):206-10. PubMed ID: 24449800
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Kinematical models to reduce the effect of skin artifacts on marker-based human motion estimation.
    Cerveri P; Pedotti A; Ferrigno G
    J Biomech; 2005 Nov; 38(11):2228-36. PubMed ID: 16154410
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optimized design of an instrumented spatial linkage that minimizes errors in locating the rotational axes of the tibiofemoral joint: a computational analysis.
    Bonny DP; Hull ML; Howell SM
    J Biomech Eng; 2013 Mar; 135(3):31003. PubMed ID: 24231814
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of human link length determination on posture reconstruction.
    Gragg J; Yang JJ; Cloutier A; Pena Pitarch E
    Appl Ergon; 2013 Jan; 44(1):93-100. PubMed ID: 22704827
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinematic models of the upper limb joints for multibody kinematics optimisation: An overview.
    Duprey S; Naaim A; Moissenet F; Begon M; Chèze L
    J Biomech; 2017 Sep; 62():87-94. PubMed ID: 27986326
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gait posture estimation using wearable acceleration and gyro sensors.
    Takeda R; Tadano S; Natorigawa A; Todoh M; Yoshinari S
    J Biomech; 2009 Nov; 42(15):2486-94. PubMed ID: 19682694
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estimating joint kinematics from skin motion observation: modelling and validation.
    Wolf A; Senesh M
    Comput Methods Biomech Biomed Engin; 2011 Nov; 14(11):939-46. PubMed ID: 21607885
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the estimation of joint kinematics during gait.
    Ramakrishnan HK; Kadaba MP
    J Biomech; 1991; 24(10):969-77. PubMed ID: 1744154
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 4D human body posture estimation based on a motion capture system and a multi-rigid link model.
    Yoshikawa N; Suzuki Y; Ozaki W; Yamamoto T; Nomura T
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4847-50. PubMed ID: 23367013
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A 2D Markerless Gait Analysis Methodology: Validation on Healthy Subjects.
    Castelli A; Paolini G; Cereatti A; Della Croce U
    Comput Math Methods Med; 2015; 2015():186780. PubMed ID: 26064181
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Finite centroid and helical axis estimation from noisy landmark measurements in the study of human joint kinematics.
    Woltring HJ; Huiskes R; de Lange A; Veldpaus FE
    J Biomech; 1985; 18(5):379-89. PubMed ID: 4008508
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Consistent accuracy in whole-body joint kinetics during gait using wearable inertial motion sensors and in-shoe pressure sensors.
    Khurelbaatar T; Kim K; Lee S; Kim YH
    Gait Posture; 2015 Jun; 42(1):65-9. PubMed ID: 25957652
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of Four Dimensional Human Model that Enables Deformation of Skin, Organs and Blood Vessel System During Body Movement - Visualizing Movements of the Musculoskeletal System.
    Suzuki N; Hattori A; Hashizume M
    Stud Health Technol Inform; 2016; 220():396-402. PubMed ID: 27046612
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Which method of hip joint centre localisation should be used in gait analysis?
    Sangeux M; Pillet H; Skalli W
    Gait Posture; 2014; 40(1):20-5. PubMed ID: 24631279
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Implications of using hierarchical and six degree-of-freedom models for normal gait analyses.
    Buczek FL; Rainbow MJ; Cooney KM; Walker MR; Sanders JO
    Gait Posture; 2010 Jan; 31(1):57-63. PubMed ID: 19796947
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accuracy and kinematics consistency of marker-based scaling approaches on a lower limb model: a comparative study with imagery data.
    Puchaud P; Sauret C; Muller A; Bideau N; Dumont G; Pillet H; Pontonnier C
    Comput Methods Biomech Biomed Engin; 2020 Feb; 23(3):114-125. PubMed ID: 31881812
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.