BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 10052924)

  • 1. A failure model for ligaments.
    Liao H; Belkoff SM
    J Biomech; 1999 Feb; 32(2):183-8. PubMed ID: 10052924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of cyclic stretching on the tensile properties of patellar tendon and medial collateral ligament in rat.
    Su WR; Chen HH; Luo ZP
    Clin Biomech (Bristol, Avon); 2008 Aug; 23(7):911-7. PubMed ID: 18485553
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estrogen-dependent tensile properties of the rabbit knee medial collateral ligament.
    Räsänen T; Messner K
    Scand J Med Sci Sports; 2000 Feb; 10(1):20-7. PubMed ID: 10693608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the fatigue behavior of the medial collateral ligament utilizing traditional and novel mechanical variables for the assessment of damage accumulation.
    Zec ML; Thistlethwaite P; Frank CB; Shrive NG
    J Biomech Eng; 2010 Jan; 132(1):011001. PubMed ID: 20524739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soft-tissue "flaws" are associated with the material properties of the healing rabbit medial collateral ligament.
    Shrive N; Chimich D; Marchuk L; Wilson J; Brant R; Frank C
    J Orthop Res; 1995 Nov; 13(6):923-9. PubMed ID: 8544030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of porcine small intestinal submucosa to enhance the healing of the medial collateral ligament--a functional tissue engineering study in rabbits.
    Musahl V; Abramowitch SD; Gilbert TW; Tsuda E; Wang JH; Badylak SF; Woo SL
    J Orthop Res; 2004 Jan; 22(1):214-20. PubMed ID: 14656683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Material characterization of human medial collateral ligament.
    Quapp KM; Weiss JA
    J Biomech Eng; 1998 Dec; 120(6):757-63. PubMed ID: 10412460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early medial collateral ligament scars have inferior creep behaviour.
    Thornton GM; Leask GP; Shrive NG; Frank CB
    J Orthop Res; 2000 Mar; 18(2):238-46. PubMed ID: 10815824
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A constitutive law for the failure behavior of medial collateral ligaments.
    De Vita R; Slaughter WS
    Biomech Model Mechanobiol; 2007 Apr; 6(3):189-97. PubMed ID: 16933127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative evaluation of the mechanical properties of the rabbit medial collateral and anterior cruciate ligaments.
    Woo SL; Newton PO; MacKenna DA; Lyon RM
    J Biomech; 1992 Apr; 25(4):377-86. PubMed ID: 1583017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical study using fuzzy systems to quantify collagen fiber recruitment and predict creep of the rabbit medial collateral ligament.
    Ali AF; Taha MM; Thornton GM; Shrive NG; Frank CB
    J Biomech Eng; 2005 Jun; 127(3):484-93. PubMed ID: 16060355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The symmetry of the medial collateral and anterior cruciate ligament properties: a biochemical study in the rat hind limb.
    Yiannakopoulos CK; Kanellopoulos AD; Dontas IA; Trovas G; Korres DS; Lyritis GP
    J Musculoskelet Neuronal Interact; 2005 Jun; 5(2):170-3. PubMed ID: 15951634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aging affects mechanical properties and lubricin/PRG4 gene expression in normal ligaments.
    Thornton GM; Lemmex DB; Ono Y; Beach CJ; Reno CR; Hart DA; Lo IK
    J Biomech; 2015 Sep; 48(12):3306-11. PubMed ID: 26163751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of material characterizations in frequently used constitutive models of ligaments.
    Wan C; Hao Z; Wen S
    Int J Numer Method Biomed Eng; 2014 Jun; 30(6):605-15. PubMed ID: 24353251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the mechanical behavior of human knee ligaments: a numerical-experimental approach.
    Mommersteeg TJ; Blankevoort L; Huiskes R; Kooloos JG; Kauer JM
    J Biomech; 1996 Feb; 29(2):151-60. PubMed ID: 8849808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatigue is more damaging than creep in ligament revealed by modulus reduction and residual strength.
    Thornton GM; Schwab TD; Oxland TR
    Ann Biomed Eng; 2007 Oct; 35(10):1713-21. PubMed ID: 17629791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rabbit medial collateral ligament scar weakness is associated with decreased collagen pyridinoline crosslink density.
    Frank C; McDonald D; Wilson J; Eyre D; Shrive N
    J Orthop Res; 1995 Mar; 13(2):157-65. PubMed ID: 7722752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligament creep recruits fibres at low stresses and can lead to modulus-reducing fibre damage at higher creep stresses: a study in rabbit medial collateral ligament model.
    Thornton GM; Shrive NG; Frank CB
    J Orthop Res; 2002 Sep; 20(5):967-74. PubMed ID: 12382961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cyclic loading causes faster rupture and strain rate than static loading in medial collateral ligament at high stress.
    Thornton GM; Schwab TD; Oxland TR
    Clin Biomech (Bristol, Avon); 2007 Oct; 22(8):932-40. PubMed ID: 17602807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased lubricin/proteoglycan 4 gene expression and decreased modulus in medial collateral ligaments following ovariohysterectomy in the adult rabbit: Evidence consistent with aging.
    Lemmex DB; Ono Y; Reno CR; Hart DA; Lo IK; Thornton GM
    J Biomech; 2016 Feb; 49(3):382-7. PubMed ID: 26776933
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.