These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
345 related articles for article (PubMed ID: 10052937)
21. CooA, a CO-sensing transcription factor from Rhodospirillum rubrum, is a CO-binding heme protein. Shelver D; Kerby RL; He Y; Roberts GP Proc Natl Acad Sci U S A; 1997 Oct; 94(21):11216-20. PubMed ID: 9326589 [TBL] [Abstract][Full Text] [Related]
22. Analysis of the L116K variant of CooA, the heme-containing CO sensor, suggests the presence of an unusual heme ligand resulting in novel activity. Youn H; Kerby RL; Thorsteinsson MV; Clark RW; Burstyn JN; Roberts GP J Biol Chem; 2002 Sep; 277(37):33616-23. PubMed ID: 12121986 [TBL] [Abstract][Full Text] [Related]
23. Activation mechanism of the CO sensor CooA. Mutational and resonance Raman spectroscopic studies. Coyle CM; Puranik M; Youn H; Nielsen SB; Williams RD; Kerby RL; Roberts GP; Spiro TG J Biol Chem; 2003 Sep; 278(37):35384-93. PubMed ID: 12796503 [TBL] [Abstract][Full Text] [Related]
24. A Study of the Dynamics of the Heme Pocket and C-helix in CooA upon CO Dissociation Using Time-Resolved Visible and UV Resonance Raman Spectroscopy. Otomo A; Ishikawa H; Mizuno M; Kimura T; Kubo M; Shiro Y; Aono S; Mizutani Y J Phys Chem B; 2016 Aug; 120(32):7836-43. PubMed ID: 27457181 [TBL] [Abstract][Full Text] [Related]
25. Identification of histidine 77 as the axial heme ligand of carbonmonoxy CooA by picosecond time-resolved resonance Raman spectroscopy. Uchida T; Ishikawa H; Ishimori K; Morishima I; Nakajima H; Aono S; Mizutani Y; Kitagawa T Biochemistry; 2000 Oct; 39(42):12747-52. PubMed ID: 11041838 [TBL] [Abstract][Full Text] [Related]
26. Control of CooA activity by the mutation at the C-terminal end of the heme-binding domain. Nakajima H; Matsuo T; Tawara T; Aono S J Inorg Biochem; 2000 Jan; 78(1):63-8. PubMed ID: 10714706 [TBL] [Abstract][Full Text] [Related]
27. Ligand-switching intermediates for the CO-sensing transcriptional activator CooA measured by pulse radiolysis. Nakajima H; Nakagawa E; Kobayashi K; Tagawa S; Aono S J Biol Chem; 2001 Oct; 276(41):37895-9. PubMed ID: 11487580 [TBL] [Abstract][Full Text] [Related]
29. The C-helix in CooA rolls upon CO binding to ferrous heme. Yamashita T; Hoashi Y; Tomisugi Y; Ishikawa Y; Uno T J Biol Chem; 2004 Nov; 279(45):47320-5. PubMed ID: 15326178 [TBL] [Abstract][Full Text] [Related]
30. Structure of the CO sensing transcription activator CooA. Lanzilotta WN; Schuller DJ; Thorsteinsson MV; Kerby RL; Roberts GP; Poulos TL Nat Struct Biol; 2000 Oct; 7(10):876-80. PubMed ID: 11017196 [TBL] [Abstract][Full Text] [Related]
31. Dissociation and recombination between ligands and heme in a CO-sensing transcriptional activator CooA. A flash photolysis study. Kumazaki S; Nakajima H; Sakaguchi T; Nakagawa E; Shinohara H; Yoshihara K; Aono S J Biol Chem; 2000 Dec; 275(49):38378-83. PubMed ID: 10978334 [TBL] [Abstract][Full Text] [Related]
32. Altering the specificity of CooA, the carbon monoxide-sensing transcriptional activator: characterization of CooA variants that bind cyanide in the Fe(II) form with high affinity. Thorsteinsson MV; Kerby RL; Roberts GP Biochemistry; 2000 Jul; 39(28):8284-90. PubMed ID: 10889037 [TBL] [Abstract][Full Text] [Related]
33. Effect of DNA binding on geminate CO recombination kinetics in CO-sensing transcription factor CooA. Benabbas A; Karunakaran V; Youn H; Poulos TL; Champion PM J Biol Chem; 2012 Jun; 287(26):21729-40. PubMed ID: 22544803 [TBL] [Abstract][Full Text] [Related]
34. The transcription regulator RcoM-2 from Burkholderia xenovorans is a cysteine-ligated hemoprotein that undergoes a redox-mediated ligand switch. Marvin KA; Kerby RL; Youn H; Roberts GP; Burstyn JN Biochemistry; 2008 Aug; 47(34):9016-28. PubMed ID: 18672900 [TBL] [Abstract][Full Text] [Related]
35. Modeling proline ligation in the heme-dependent CO sensor, CooA, using small-molecule analogs. Pinkert JC; Clark RW; Burstyn JN J Biol Inorg Chem; 2006 Jul; 11(5):642-50. PubMed ID: 16724227 [TBL] [Abstract][Full Text] [Related]
36. Stopped-flow analysis of CO and NO binding to inducible nitric oxide synthase. Abu-Soud HM; Wu C; Ghosh DK; Stuehr DJ Biochemistry; 1998 Mar; 37(11):3777-86. PubMed ID: 9521697 [TBL] [Abstract][Full Text] [Related]
37. Heme environmental structure of CooA is modulated by the target DNA binding. Evidence from resonance Raman spectroscopy and CO rebinding kinetics. Uchida T; Ishikawa H; Takahashi S; Ishimori K; Morishima I; Ohkubo K; Nakajima H; Aono S J Biol Chem; 1998 Aug; 273(32):19988-92. PubMed ID: 9685335 [TBL] [Abstract][Full Text] [Related]
38. The role of the hydrophobic distal heme pocket of CooA in ligand sensing and response. Youn H; Kerby RL; Roberts GP J Biol Chem; 2003 Jan; 278(4):2333-40. PubMed ID: 12433917 [TBL] [Abstract][Full Text] [Related]
39. Functionally critical elements of CooA-related CO sensors. Youn H; Kerby RL; Conrad M; Roberts GP J Bacteriol; 2004 Mar; 186(5):1320-9. PubMed ID: 14973040 [TBL] [Abstract][Full Text] [Related]
40. The heme pocket afforded by Gly117 is crucial for proper heme ligation and activity of CooA. Youn H; Kerby RL; Thorsteinsson MV; Conrad M; Staples CR; Serate J; Beack J; Roberts GP J Biol Chem; 2001 Nov; 276(45):41603-10. PubMed ID: 11551932 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]