BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 10052939)

  • 1. The cbb3 terminal oxidase of Rhodobacter sphaeroides 2.4.1: structural and functional implications for the regulation of spectral complex formation.
    Oh JI; Kaplan S
    Biochemistry; 1999 Mar; 38(9):2688-96. PubMed ID: 10052939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of mutations of five conserved histidine residues in the catalytic subunit of the cbb3 cytochrome c oxidase on its function.
    Oh JI
    J Microbiol; 2006 Jun; 44(3):284-92. PubMed ID: 16820758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A redox-responsive pathway for aerobic regulation of photosynthesis gene expression in Rhodobacter sphaeroides 2.4.1.
    O'Gara JP; Eraso JM; Kaplan S
    J Bacteriol; 1998 Aug; 180(16):4044-50. PubMed ID: 9696749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From redox flow to gene regulation: role of the PrrC protein of Rhodobacter sphaeroides 2.4.1.
    Eraso JM; Kaplan S
    Biochemistry; 2000 Feb; 39(8):2052-62. PubMed ID: 10684655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for the role of redox carriers in photosynthesis gene expression and carotenoid biosynthesis in Rhodobacter sphaeroides 2.4.1.
    O'Gara JP; Kaplan S
    J Bacteriol; 1997 Mar; 179(6):1951-61. PubMed ID: 9068641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cbb3-type cytochrome c oxidase from Rhodobacter sphaeroides, a proton-pumping heme-copper oxidase.
    Toledo-Cuevas M; Barquera B; Gennis RB; Wikström M; García-Horsman JA
    Biochim Biophys Acta; 1998 Jul; 1365(3):421-34. PubMed ID: 9711295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-step assembly pathway of the cbb3-type cytochrome c oxidase complex.
    Kulajta C; Thumfart JO; Haid S; Daldal F; Koch HG
    J Mol Biol; 2006 Feb; 355(5):989-1004. PubMed ID: 16343536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oxygen adaptation. The role of the CcoQ subunit of the cbb3 cytochrome c oxidase of Rhodobacter sphaeroides 2.4.1.
    Oh JI; Kaplan S
    J Biol Chem; 2002 May; 277(18):16220-8. PubMed ID: 11864982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation and characterization of Rhodobacter capsulatus mutants affected in cytochrome cbb3 oxidase activity.
    Koch HG; Hwang O; Daldal F
    J Bacteriol; 1998 Feb; 180(4):969-78. PubMed ID: 9473054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen regulation of the ccoN gene encoding a component of the cbb3 oxidase in Rhodobacter sphaeroides 2.4.1T: involvement of the FnrL protein.
    Mouncey NJ; Kaplan S
    J Bacteriol; 1998 Apr; 180(8):2228-31. PubMed ID: 9555909
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inactivation of the Pseudomonas putida cytochrome o ubiquinol oxidase leads to a significant change in the transcriptome and to increased expression of the CIO and cbb3-1 terminal oxidases.
    Morales G; Ugidos A; Rojo F
    Environ Microbiol; 2006 Oct; 8(10):1764-74. PubMed ID: 16958757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential expression of the CO2 fixation operons of Rhodobacter sphaeroides by the Prr/Reg two-component system during chemoautotrophic growth.
    Gibson JL; Dubbs JM; Tabita FR
    J Bacteriol; 2002 Dec; 184(23):6654-64. PubMed ID: 12426354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interacting regulatory networks in the facultative photosynthetic bacterium, Rhodobacter sphaeroides 2.4.1.
    Kaplan S; Eraso J; Roh JH
    Biochem Soc Trans; 2005 Feb; 33(Pt 1):51-5. PubMed ID: 15667262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mobile cytochrome c2 and membrane-anchored cytochrome cy are both efficient electron donors to the cbb3- and aa3-type cytochrome c oxidases during respiratory growth of Rhodobacter sphaeroides.
    Daldal F; Mandaci S; Winterstein C; Myllykallio H; Duyck K; Zannoni D
    J Bacteriol; 2001 Mar; 183(6):2013-24. PubMed ID: 11222600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-dependent regulation of photosynthesis genes in Rhodobacter sphaeroides 2.4.1 is coordinately controlled by photosynthetic electron transport via the PrrBA two-component system and the photoreceptor AppA.
    Happ HN; Braatsch S; Broschek V; Osterloh L; Klug G
    Mol Microbiol; 2005 Nov; 58(3):903-14. PubMed ID: 16238636
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subunit CcoQ is involved in the assembly of the Cbb
    Kohlstaedt M; Buschmann S; Langer JD; Xie H; Michel H
    Biochim Biophys Acta Bioenerg; 2017 Mar; 1858(3):231-238. PubMed ID: 28007379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the active-site structure of the cbb3-type oxidase from Rhodobacter sphaeroides.
    Sharma V; Wikström M; Laakkonen L
    Biochemistry; 2008 Apr; 47(14):4221-7. PubMed ID: 18338855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interdependent expression of the ccoNOQP-rdxBHIS loci in Rhodobacter sphaeroides 2.4.1.
    Roh JH; Kaplan S
    J Bacteriol; 2002 Oct; 184(19):5330-8. PubMed ID: 12218019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The coordinate regulation of multiple terminal oxidases by the Pseudomonas putida ANR global regulator.
    Ugidos A; Morales G; Rial E; Williams HD; Rojo F
    Environ Microbiol; 2008 Jul; 10(7):1690-702. PubMed ID: 18341582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential carotenoid composition of the B875 and B800-850 photosynthetic antenna complexes in Rhodobacter sphaeroides 2.4.1: involvement of spheroidene and spheroidenone in adaptation to changes in light intensity and oxygen availability.
    Yeliseev AA; Eraso JM; Kaplan S
    J Bacteriol; 1996 Oct; 178(20):5877-83. PubMed ID: 8830681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.