These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 10052946)

  • 1. Identification of regions of arrestin that bind to rhodopsin.
    Smith WC; McDowell JH; Dugger DR; Miller R; Arendt A; Popp MP; Hargrave PA
    Biochemistry; 1999 Mar; 38(9):2752-61. PubMed ID: 10052946
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arrestin residues involved in the functional binding of arrestin to phosphorylated, photolyzed rhodopsin.
    Ascano MT; Smith WC; Gregurick SK; Robinson PR
    Mol Vis; 2006 Dec; 12():1516-25. PubMed ID: 17167410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of arrestin: requirement of phosphorylation as the negative charge on residues in synthetic peptides from the carboxyl-terminal region of rhodopsin.
    McDowell JH; Robinson PR; Miller RL; Brannock MT; Arendt A; Smith WC; Hargrave PA
    Invest Ophthalmol Vis Sci; 2001 Jun; 42(7):1439-43. PubMed ID: 11381044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct binding of visual arrestin to a rhodopsin carboxyl terminal synthetic phosphopeptide.
    Liu P; Roush ED; Bruno J; Osawa S; Weiss ER
    Mol Vis; 2004 Oct; 10():712-9. PubMed ID: 15480300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The arrestin-bound conformation and dynamics of the phosphorylated carboxy-terminal region of rhodopsin.
    Kisselev OG; McDowell JH; Hargrave PA
    FEBS Lett; 2004 Apr; 564(3):307-11. PubMed ID: 15111114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The surface of visual arrestin that binds to rhodopsin.
    Smith WC; Dinculescu A; Peterson JJ; McDowell JH
    Mol Vis; 2004 Jun; 10():392-8. PubMed ID: 15215746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding of arrestin to cytoplasmic loop mutants of bovine rhodopsin.
    Raman D; Osawa S; Weiss ER
    Biochemistry; 1999 Apr; 38(16):5117-23. PubMed ID: 10213616
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional differences in the interaction of arrestin and its splice variant, p44, with rhodopsin.
    Pulvermüller A; Maretzki D; Rudnicka-Nawrot M; Smith WC; Palczewski K; Hofmann KP
    Biochemistry; 1997 Jul; 36(30):9253-60. PubMed ID: 9230059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping interaction sites between rhodopsin and arrestin by phage display and synthetic peptides.
    Smith WC; Hargrave PA
    Methods Enzymol; 2000; 315():437-55. PubMed ID: 10736719
    [No Abstract]   [Full Text] [Related]  

  • 10. Differential phosphorylation of the rhodopsin cytoplasmic tail mediates the binding of arrestin and its splice variant, p44.
    Ascano M; Robinson PR
    Biochemistry; 2006 Feb; 45(7):2398-407. PubMed ID: 16475829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-terminal and C-terminal domains of arrestin both contribute in binding to rhodopsin.
    Skegro D; Pulvermüller A; Krafft B; Granzin J; Hofmann KP; Büldt G; Schlesinger R
    Photochem Photobiol; 2007; 83(2):385-92. PubMed ID: 17132044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arrestin with a single amino acid substitution quenches light-activated rhodopsin in a phosphorylation-independent fashion.
    Gray-Keller MP; Detwiler PB; Benovic JL; Gurevich VV
    Biochemistry; 1997 Jun; 36(23):7058-63. PubMed ID: 9188704
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray crystal structure of arrestin from bovine rod outer segments.
    Granzin J; Wilden U; Choe HW; Labahn J; Krafft B; Büldt G
    Nature; 1998 Feb; 391(6670):918-21. PubMed ID: 9495348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhodopsin phosphorylation as a mechanism of cyclic GMP phosphodiesterase regulation by S-modulin.
    Kawamura S
    Nature; 1993 Apr; 362(6423):855-7. PubMed ID: 8386803
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Duration and amplitude of the light-induced cGMP hydrolysis in vertebrate photoreceptors are regulated by multiple phosphorylation of rhodopsin and by arrestin binding.
    Wilden U
    Biochemistry; 1995 Jan; 34(4):1446-54. PubMed ID: 7827093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A GTP-protein activator of phosphodiesterase which forms in response to bleached rhodopsin.
    Uchida S; Wheeler GL; Yamazaki A; Bitensky MW
    J Cyclic Nucleotide Res; 1981; 7(2):95-104. PubMed ID: 6278004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A variant of arrestin-1 binds rod outer segment membranes in a light-independent manner.
    Uzcanga GL; Becerra AR; Perdomo D; Bubis J
    Arch Biochem Biophys; 2011 Mar; 507(2):219-31. PubMed ID: 21176771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of G-protein-receptor interaction in amplified phosphodiesterase activation of retinal rods.
    Liebman PA; Sitaramayya A
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 17():215-25. PubMed ID: 6328918
    [No Abstract]   [Full Text] [Related]  

  • 19. Characterization of a truncated form of arrestin isolated from bovine rod outer segments.
    Palczewski K; Buczylko J; Ohguro H; Annan RS; Carr SA; Crabb JW; Kaplan MW; Johnson RS; Walsh KA
    Protein Sci; 1994 Feb; 3(2):314-24. PubMed ID: 8003967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of p44, a constitutively active splice variant of visual arrestin.
    Granzin J; Cousin A; Weirauch M; Schlesinger R; Büldt G; Batra-Safferling R
    J Mol Biol; 2012 Mar; 416(5):611-8. PubMed ID: 22306737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.