These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 10054002)
1. Shock temperatures and melting of iron at Earth core conditions. Yoo CS; Holmes NC; Ross M; Webb DJ; Pike C Phys Rev Lett; 1993 Jun; 70(25):3931-3934. PubMed ID: 10054002 [No Abstract] [Full Text] [Related]
2. Melting of iron at the physical conditions of the Earth's core. Nguyen JH; Holmes NC Nature; 2004 Jan; 427(6972):339-42. PubMed ID: 14737164 [TBL] [Abstract][Full Text] [Related]
3. Properties of liquid iron along the melting line up to Earth-core pressures. Fomin YD; Ryzhov VN; Brazhkin VV J Phys Condens Matter; 2013 Jul; 25(28):285104. PubMed ID: 23756492 [TBL] [Abstract][Full Text] [Related]
4. Planetary science. Shock compression of stishovite and melting of silica at planetary interior conditions. Millot M; Dubrovinskaia N; Černok A; Blaha S; Dubrovinsky L; Braun DG; Celliers PM; Collins GW; Eggert JH; Jeanloz R Science; 2015 Jan; 347(6220):418-20. PubMed ID: 25613887 [TBL] [Abstract][Full Text] [Related]
5. Melting of iron under Earth's core conditions from diffusion Monte Carlo free energy calculations. Sola E; Alfè D Phys Rev Lett; 2009 Aug; 103(7):078501. PubMed ID: 19792692 [TBL] [Abstract][Full Text] [Related]
6. Temperatures in Earth's Core Based on Melting and Phase Transformation Experiments on Iron. Saxena SK; Shen G; Lazor P Science; 1994 Apr; 264(5157):405-7. PubMed ID: 17836902 [TBL] [Abstract][Full Text] [Related]
7. Development of a simultaneous Hugoniot and temperature measurement for preheated-metal shock experiments: melting temperatures of Ta at pressures of 100 GPa. Li J; Zhou X; Li J; Wu Q; Cai L; Dai C Rev Sci Instrum; 2012 May; 83(5):053902. PubMed ID: 22667628 [TBL] [Abstract][Full Text] [Related]
8. Melting of iron at Earth's inner core boundary based on fast X-ray diffraction. Anzellini S; Dewaele A; Mezouar M; Loubeyre P; Morard G Science; 2013 Apr; 340(6131):464-6. PubMed ID: 23620049 [TBL] [Abstract][Full Text] [Related]
9. Quasi-Ab initio molecular dynamic study of Fe melting. Belonoshko AB; Ahuja R; Johansson B Phys Rev Lett; 2000 Apr; 84(16):3638-41. PubMed ID: 11019165 [TBL] [Abstract][Full Text] [Related]
10. Melting in super-earths. Stixrude L Philos Trans A Math Phys Eng Sci; 2014 Apr; 372(2014):20130076. PubMed ID: 24664915 [TBL] [Abstract][Full Text] [Related]
11. The evolution of terrestrial-type planets. Anderson DL Appl Opt; 1969 Jul; 8(7):1271-7. PubMed ID: 20072427 [TBL] [Abstract][Full Text] [Related]
13. Melting of (Mg, Fe)SiO3-Perovskite to 625 Kilobars: Indication of a High Melting Temperature in the Lower Mantle. Zerr A; Boehier R Science; 1993 Oct; 262(5133):553-5. PubMed ID: 17733237 [TBL] [Abstract][Full Text] [Related]
14. The Melting Curve of Iron to 250 Gigapascals: A Constraint on the Temperature at Earth's Center. Williams Q; Jeanloz R; Bass J; Svendsen B; Ahrens TJ Science; 1987 Apr; 236(4798):181-2. PubMed ID: 17789782 [TBL] [Abstract][Full Text] [Related]
16. Core formation during early accretion of the Earth. Newsom HE; Sims KW Science; 1991 May; 252(5008):926-33. PubMed ID: 17843226 [TBL] [Abstract][Full Text] [Related]
17. Partitioning of oxygen during core formation on the Earth and Mars. Rubie DC; Gessmann CK; Frost DJ Nature; 2004 May; 429(6987):58-61. PubMed ID: 15129278 [TBL] [Abstract][Full Text] [Related]
18. Accretion of the Earth and segregation of its core. Wood BJ; Walter MJ; Wade J Nature; 2006 Jun; 441(7095):825-33. PubMed ID: 16778882 [TBL] [Abstract][Full Text] [Related]
19. Transport coefficients and entropy-scaling law in liquid iron up to Earth-core pressures. Cao QL; Wang PP; Huang DH; Yang JS; Wan MJ; Wang FH J Chem Phys; 2014 Mar; 140(11):114505. PubMed ID: 24655191 [TBL] [Abstract][Full Text] [Related]