These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
52 related articles for article (PubMed ID: 10055953)
1. Giant resonance effects on heavy-ion fusion. Hussein MS; de Toledo Piza AF Phys Rev Lett; 1994 Apr; 72(17):2693-2696. PubMed ID: 10055953 [No Abstract] [Full Text] [Related]
2. Function of fusion regulatory proteins (FRPs) in immune cells and virus-infected cells. Tsurudome M; Ito Y Crit Rev Immunol; 2000; 20(3):167-96. PubMed ID: 10968370 [TBL] [Abstract][Full Text] [Related]
3. Molecular characterization of fusion regulatory protein-1 (FRP-1) that induces multinucleated giant cell formation of monocytes and HIV gp160-mediated cell fusion. FRP-1 and 4F2/CD98 are identical molecules. Ohgimoto S; Tabata N; Suga S; Nishio M; Ohta H; Tsurudome M; Komada H; Kawano M; Watanabe N; Ito Y J Immunol; 1995 Oct; 155(7):3585-92. PubMed ID: 7561057 [TBL] [Abstract][Full Text] [Related]
4. Detection of association and fusion of giant vesicles using a fluorescence-activated cell sorter. Sunami T; Caschera F; Morita Y; Toyota T; Nishimura K; Matsuura T; Suzuki H; Hanczyc MM; Yomo T Langmuir; 2010 Oct; 26(19):15098-103. PubMed ID: 20822108 [TBL] [Abstract][Full Text] [Related]
5. Negative ion source development for fusion application (invited). Takeiri Y Rev Sci Instrum; 2010 Feb; 81(2):02B114. PubMed ID: 20192420 [TBL] [Abstract][Full Text] [Related]
6. Review of highly charged heavy ion production with electron cyclotron resonance ion source (invited). Nakagawa T Rev Sci Instrum; 2014 Feb; 85(2):02A935. PubMed ID: 24593514 [TBL] [Abstract][Full Text] [Related]
7. Induction of DC-STAMP by alternative activation and downstream signaling mechanisms. Yagi M; Ninomiya K; Fujita N; Suzuki T; Iwasaki R; Morita K; Hosogane N; Matsuo K; Toyama Y; Suda T; Miyamoto T J Bone Miner Res; 2007 Jul; 22(7):992-1001. PubMed ID: 17402846 [TBL] [Abstract][Full Text] [Related]
9. Review on heavy ion radiotherapy facilities and related ion sources (invited). Kitagawa A; Fujita T; Muramatsu M; Biri S; Drentje AG Rev Sci Instrum; 2010 Feb; 81(2):02B909. PubMed ID: 20192475 [TBL] [Abstract][Full Text] [Related]
10. Multiple excitation of giant dipole resonances in relativistic heavy ion collisions. Ponomarev VY; Vigezzi E; Bortignon PF; Broglia RA; Colò G; Lazzari G; Voronov VV; Baur G Phys Rev Lett; 1994 Feb; 72(8):1168-1171. PubMed ID: 10056640 [No Abstract] [Full Text] [Related]
11. Communication: X-ray excited optical luminescence from TbCl3 at the giant resonance of terbium. Heigl F; Jürgensen A; Zhou XT; Hu YF; Zuin L; Sham TK J Chem Phys; 2013 Feb; 138(6):061104. PubMed ID: 23425454 [TBL] [Abstract][Full Text] [Related]
12. Horse cytokine/IgG fusion proteins--mammalian expression of biologically active cytokines and a system to verify antibody specificity to equine cytokines. Wagner B; Robeson J; McCracken M; Wattrang E; Antczak DF Vet Immunol Immunopathol; 2005 May; 105(1-2):1-14. PubMed ID: 15797470 [TBL] [Abstract][Full Text] [Related]
13. Heavy-ion excitation of one- and two-phonon giant dipole states as an exit doorway phenomenon. Canto LF; Romanelli A; Hussein MS; de Toledo Piza AF Phys Rev Lett; 1994 Apr; 72(14):2147-2150. PubMed ID: 10055801 [No Abstract] [Full Text] [Related]
14. Electron cyclotron resonance ion sources in use for heavy ion cancer therapy. Tinschert K; Iannucci R; Lang R Rev Sci Instrum; 2008 Feb; 79(2 Pt 2):02C505. PubMed ID: 18315248 [TBL] [Abstract][Full Text] [Related]
15. An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy. Cao Y; Li JQ; Sun LT; Zhang XZ; Feng YC; Wang H; Ma BH; Li XX Rev Sci Instrum; 2014 Feb; 85(2):02A960. PubMed ID: 24593539 [TBL] [Abstract][Full Text] [Related]
16. Monocyte-derived giant cell formation in patients with breast cancer. Wright DR; Cooper AJ; Loizidou M; Smallwood JA; Carpenter R; Taylor I Eur J Surg Oncol; 1991 Jun; 17(3):245-50. PubMed ID: 2044778 [TBL] [Abstract][Full Text] [Related]
17. Giant suppression of flux-flow resistivity in heavy-ion irradiated Tl2Ba2Ca2Cu3O10 films: Influence of linear defects on vortex transport. Budhani RC; Suenaga M; Liou SH Phys Rev Lett; 1992 Dec; 69(26):3816-3819. PubMed ID: 10046921 [No Abstract] [Full Text] [Related]
18. Limitation of heavy-ion fusion: Fusion of aligned 23Na with 23Na. Blatt K; Becker K; Heck B; Jänsch H; Leucker H; Fick D; Caplar R; Butsch R; Krämer D; Möbius K; Moroz Z; Ott W; Paul P; Steffens E; Tungate G; Turkiewicz IM; Weller A Phys Rev Lett; 1986 Aug; 57(7):819-822. PubMed ID: 10034169 [No Abstract] [Full Text] [Related]
19. Involvement of ADAM9 in multinucleated giant cell formation of blood monocytes. Namba K; Nishio M; Mori K; Miyamoto N; Tsurudome M; Ito M; Kawano M; Uchida A; Ito Y Cell Immunol; 2001 Nov; 213(2):104-13. PubMed ID: 11831872 [TBL] [Abstract][Full Text] [Related]
20. In vitro interaction of high-LET heavy-ion irradiation and chemotherapeutic agents in two cell lines with different radiosensitivities and different p53 status. Takahashi T; Fukawa T; Hirayama R; Yoshida Y; Musha A; Furusawa Y; Ando K; Nakano T Anticancer Res; 2010 Jun; 30(6):1961-7. PubMed ID: 20651340 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]