These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 10058379)

  • 1. From Fermi's Golden Rule to the Vacuum Rabi Splitting: Magnetopolaritons in a Semiconductor Optical Microcavity.
    Tignon J; Voisin P; Delalande C; Voos M; Houdré R; Oesterle U; Stanley RP
    Phys Rev Lett; 1995 May; 74(20):3967-3970. PubMed ID: 10058379
    [No Abstract]   [Full Text] [Related]  

  • 2. Two-step model for ultrafast interfacial electron transfer: limitations of Fermi's golden rule revealed by quantum dynamics simulations.
    Liu C; Jakubikova E
    Chem Sci; 2017 Sep; 8(9):5979-5991. PubMed ID: 28989628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization of Fermi's golden rule through imaging of light emission from atomic silver chains.
    Chen C; Bobisch CA; Ho W
    Science; 2009 Aug; 325(5943):981-5. PubMed ID: 19696347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emergence of Fermi's Golden Rule.
    Micklitz T; Morningstar A; Altland A; Huse DA
    Phys Rev Lett; 2022 Sep; 129(14):140402. PubMed ID: 36240392
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large and well-defined Rabi splitting in a semiconductor nanogap cavity.
    Uemoto M; Ajiki H
    Opt Express; 2014 Sep; 22(19):22470-8. PubMed ID: 25321717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical determination of vacuum Rabi splitting in a semiconductor quantum dot induced by a metal nanoparticle.
    He Y; Jiang C; Chen B; Li JJ; Zhu KD
    Opt Lett; 2012 Jul; 37(14):2943-5. PubMed ID: 22825186
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fermi's Golden Rule for Spontaneous Emission in Absorptive and Amplifying Media.
    Franke S; Ren J; Richter M; Knorr A; Hughes S
    Phys Rev Lett; 2021 Jul; 127(1):013602. PubMed ID: 34270314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bose-Einstein condensation and superfluidity of trapped polaritons in graphene and quantum wells embedded in a microcavity.
    Berman OL; Kezerashvili RY; Lozovik YE; Snoke DW
    Philos Trans A Math Phys Eng Sci; 2010 Dec; 368(1932):5459-82. PubMed ID: 21041225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theory of phonon-modified quantum dot photoluminescence intensity in structured photonic reservoirs.
    Roy-Choudhury K; Hughes S
    Opt Lett; 2015 Apr; 40(8):1838-41. PubMed ID: 25872087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vacuum Rabi coupling enhancement and Zeeman splitting in semiconductor quantum microcavity structures in a high magnetic field.
    Fisher TA; Afshar AM; Skolnick MS; Whittaker DM; Roberts JS
    Phys Rev B Condens Matter; 1996 Apr; 53(16):R10469-R10472. PubMed ID: 9982708
    [No Abstract]   [Full Text] [Related]  

  • 11. Validity criteria for Fermi's golden rule scattering rates applied to metallic nanowires.
    Moors K; Sorée B; Magnus W
    J Phys Condens Matter; 2016 Sep; 28(36):365302. PubMed ID: 27400727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Equilibrium Fermi's Golden Rule Charge Transfer Rate Constants in the Condensed Phase: The Linearized Semiclassical Method vs Classical Marcus Theory.
    Sun X; Geva E
    J Phys Chem A; 2016 May; 120(19):2976-90. PubMed ID: 26452042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum vacuum radiation spectra from a semiconductor microcavity with a time-modulated vacuum Rabi frequency.
    De Liberato S; Ciuti C; Carusotto I
    Phys Rev Lett; 2007 Mar; 98(10):103602. PubMed ID: 17358533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vibrational Energy Relaxation of Thiocyanate Ions in Liquid-to-Supercritical Light and Heavy Water. A Fermi's Golden Rule Analysis.
    Czurlok D; Gleim J; Lindner J; Vöhringer P
    J Phys Chem Lett; 2014 Oct; 5(19):3373-9. PubMed ID: 26278447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exact vs. asymptotic spectral densities in the Garg-Onuchic-Ambegaokar charge transfer model and its effect on Fermi's golden rule rate constants.
    Sun X; Geva E
    J Chem Phys; 2016 Jan; 144(4):044106. PubMed ID: 26827201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vacuum Rabi splitting in a semiconductor circuit QED system.
    Toida H; Nakajima T; Komiyama S
    Phys Rev Lett; 2013 Feb; 110(6):066802. PubMed ID: 23432287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photodetection probability in quantum systems with arbitrarily strong light-matter interaction.
    Di Stefano O; Kockum AF; Ridolfo A; Savasta S; Nori F
    Sci Rep; 2018 Dec; 8(1):17825. PubMed ID: 30546126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity.
    Peter E; Senellart P; Martrou D; Lemaître A; Hours J; Gérard JM; Bloch J
    Phys Rev Lett; 2005 Aug; 95(6):067401. PubMed ID: 16090987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-range spin-qubit interaction mediated by microcavity polaritons.
    Quinteiro GF; Fernández-Rossier J; Piermarocchi C
    Phys Rev Lett; 2006 Sep; 97(9):097401. PubMed ID: 17026399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient energy exchange between plasmon and cavity modes via Rabi-analogue splitting in a hybrid plasmonic nanocavity.
    Chen S; Li G; Lei D; Cheah KW
    Nanoscale; 2013 Oct; 5(19):9129-33. PubMed ID: 23913114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.