These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 10059170)
1. An Accurate Measurement of the Landau-Pomeranchuk-Migdal Effect. Anthony PL; Becker-Szendy R; Bosted PE; Cavalli-Sforza M; Keller LP; Kelley LA; Klein SR; Niemi G; Perl ML; Rochester LS; White JL Phys Rev Lett; 1995 Sep; 75(10):1949-1952. PubMed ID: 10059170 [No Abstract] [Full Text] [Related]
2. Landau-Pomeranchuk-Migdal effect for finite targets. Blankenbecler R; Drell SD Phys Rev D Part Fields; 1996 Jun; 53(11):6265-6281. PubMed ID: 10019914 [No Abstract] [Full Text] [Related]
3. Landau-Pomeranchuk-Migdal effect in QCD and radiative energy loss in a quark-gluon plasma. Wang XN; Gyulassy M; Plümer M Phys Rev D Part Fields; 1995 Apr; 51(7):3436-3446. PubMed ID: 10018812 [No Abstract] [Full Text] [Related]
4. Experimental examination of the Landau-Pomeranchuk-Migdal effect by high-energy electromagnetic cascade showers in lead. Kasahara K Phys Rev D Part Fields; 1985 Jun; 31(11):2737-2747. PubMed ID: 9955588 [No Abstract] [Full Text] [Related]
5. Electromagnetic cascade showers in lead with the Landau-Pomeranchuk-Migdal effect included: Average behavior of the one-dimensional LPM shower in lead. Misaki A Phys Rev D Part Fields; 1989 Nov; 40(9):3086-3096. PubMed ID: 10012165 [No Abstract] [Full Text] [Related]
6. Is the electron radiation length constant at high energies? Hansen HD; Uggerhøj UI; Biino C; Ballestrero S; Mangiarotti A; Sona P; Ketel TJ; Vilakazi ZZ Phys Rev Lett; 2003 Jul; 91(1):014801. PubMed ID: 12906543 [TBL] [Abstract][Full Text] [Related]
7. Local Monte Carlo implementation of the non-Abelian Landau-Pomeranschuk-Migdal effect. Zapp K; Stachel J; Wiedemann UA Phys Rev Lett; 2009 Oct; 103(15):152302. PubMed ID: 19905625 [TBL] [Abstract][Full Text] [Related]
8. Influence of the Landau-Pomeranchuk effect on lepton-pair production in a hadronic gas. Cleymans J; Goloviznin VV; Redlich K Phys Rev D Part Fields; 1993 Jan; 47(1):173-178. PubMed ID: 10015387 [No Abstract] [Full Text] [Related]
9. Delta isobar Landau-Migdal parameters and the high momentum properties of the spin-isospin response functions. Shiino E; Saito Y; Ichimura M; Toki H Phys Rev C Nucl Phys; 1986 Sep; 34(3):1004-1011. PubMed ID: 9953544 [No Abstract] [Full Text] [Related]
10. Helicity order: hidden order parameter in URu2Si2. Varma CM; Zhu L Phys Rev Lett; 2006 Jan; 96(3):036405. PubMed ID: 16486745 [TBL] [Abstract][Full Text] [Related]
11. Resistivity of a non-galilean-invariant Fermi liquid near Pomeranchuk quantum criticality. Maslov DL; Yudson VI; Chubukov AV Phys Rev Lett; 2011 Mar; 106(10):106403. PubMed ID: 21469816 [TBL] [Abstract][Full Text] [Related]
12. Electrical resistivity near Pomeranchuk instability in two dimensions. Dell'Anna L; Metzner W Phys Rev Lett; 2007 Mar; 98(13):136402. PubMed ID: 17501223 [TBL] [Abstract][Full Text] [Related]
13. d-wave superconductivity and pomeranchuk instability in the two-dimensional hubbard model. Halboth CJ; Metzner W Phys Rev Lett; 2000 Dec; 85(24):5162-5. PubMed ID: 11102211 [TBL] [Abstract][Full Text] [Related]
14. Turning a first order quantum phase transition continuous by fluctuations: general flow equations and application to d-wave Pomeranchuk instability. Jakubczyk P; Metzner W; Yamase H Phys Rev Lett; 2009 Nov; 103(22):220602. PubMed ID: 20366082 [TBL] [Abstract][Full Text] [Related]
15. Effects of Landau level mixing on the fractional quantum Hall effect in monolayer graphene. Peterson MR; Nayak C Phys Rev Lett; 2014 Aug; 113(8):086401. PubMed ID: 25192110 [TBL] [Abstract][Full Text] [Related]
16. Temperature chaos, rejuvenation, and memory in Migdal-Kadanoff spin glasses. Sasaki M; Martin OC Phys Rev Lett; 2003 Aug; 91(9):097201. PubMed ID: 14525205 [TBL] [Abstract][Full Text] [Related]
17. Measurement of Landau damping and the evolution to a BGK equilibrium. Danielson JR; Anderegg F; Driscoll CF Phys Rev Lett; 2004 Jun; 92(24):245003. PubMed ID: 15245092 [TBL] [Abstract][Full Text] [Related]
18. Absence of the Kosterlitz-Thouless fixed points in the Migdal-Kadanoff recursion formulas. Ito KR Phys Rev Lett; 1985 Jun; 54(22):2383-2386. PubMed ID: 10031328 [No Abstract] [Full Text] [Related]
19. Phase diagram of the N=2 Kazakov-Migdal model. Gocksch A; Shen Y Phys Rev Lett; 1992 Nov; 69(19):2747-2749. PubMed ID: 10046578 [No Abstract] [Full Text] [Related]