These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 10061824)

  • 1. Model of Quantum Chaotic Billiards: Spectral Statistics and Wave Functions in Two Dimensions.
    Cuevas E; Louis E; Vergés JA
    Phys Rev Lett; 1996 Sep; 77(10):1970-1973. PubMed ID: 10061824
    [No Abstract]   [Full Text] [Related]  

  • 2. Wave function statistics for ballistic quantum transport through chaotic open billiards: statistical crossover and coexistence of regular and chaotic waves.
    Ishio H; Saichev AI; Sadreev AF; Berggren KF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056208. PubMed ID: 11736055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric circuit networks equivalent to chaotic quantum billiards.
    Bulgakov EN; Maksimov DN; Sadreev AF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046205. PubMed ID: 15903768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nodal domains statistics: a criterion for quantum chaos.
    Blum G; Gnutzmann S; Smilansky U
    Phys Rev Lett; 2002 Mar; 88(11):114101. PubMed ID: 11909403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistics of wave functions and currents induced by spin-orbit interaction in chaotic billiards.
    Bulgakov EN; Sadreev AF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056211. PubMed ID: 15600732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Level statistics and eigenfunctions of square torus billiards: manifesting the transition from regular to chaotic behaviors.
    Tuan PH; Yu YT; Chiang PY; Liang HC; Huang KF; Chen YF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026202. PubMed ID: 22463295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum stress in chaotic billiards.
    Berggren KF; Maksimov DN; Sadreev AF; Höhmann R; Kuhl U; Stöckmann HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 2):066209. PubMed ID: 18643352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Statistics of wave functions in coupled chaotic systems.
    Tschersich A; Efetov KB
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt A):2042-5. PubMed ID: 11088669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum chaotic trajectories in integrable right triangular billiards.
    de Sales JA; Florencio J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jan; 67(1 Pt 2):016216. PubMed ID: 12636594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wave function statistics in open chaotic billiards.
    Brouwer PW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Oct; 68(4 Pt 2):046205. PubMed ID: 14683033
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of resonance strengths in microwave billiards of mixed and chaotic dynamics.
    Dembowski C; Dietz B; Friedrich T; Gräf HD; Harney HL; Heine A; Miski-Oglu M; Richter A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046202. PubMed ID: 15903765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifractality and intermediate statistics in quantum maps.
    Martin J; Giraud O; Georgeot B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):035201. PubMed ID: 18517448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermediate spectral statistics of rational triangular quantum billiards.
    Lozej Č; Bogomolny E
    Phys Rev E; 2024 Aug; 110(2-1):024213. PubMed ID: 39295053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum-classical correspondence in the wave functions of andreev billiards.
    Kormányos A; Kaufmann Z; Cserti J; Lambert CJ
    Phys Rev Lett; 2006 Jun; 96(23):237002. PubMed ID: 16803393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crossover from regular to irregular behavior in current flow through open billiards.
    Berggren KF; Sadreev AF; Starikov AA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016218. PubMed ID: 12241472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deformations and dilations of chaotic billiards: dissipation rate, and quasiorthogonality of the boundary wave functions.
    Barnett A; Cohen D; Heller EJ
    Phys Rev Lett; 2000 Aug; 85(7):1412-5. PubMed ID: 10970517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding quantum scattering properties in terms of purely classical dynamics: two-dimensional open chaotic billiards.
    Méndez-Bermúdez JA; Luna-Acosta GA; Seba P; Pichugin KN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Oct; 66(4 Pt 2):046207. PubMed ID: 12443299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relativistic quantum level-spacing statistics in chaotic graphene billiards.
    Huang L; Lai YC; Grebogi C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 2):055203. PubMed ID: 20866288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical properties of experimental coherent waves in microcavity lasers: analogous study of quantum billiard wave functions.
    Chen CC; Liu CC; Su KW; Lu TH; Chen YF; Huang KF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 2):046202. PubMed ID: 17500973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of level-spacing statistics in chaotic graphene billiards.
    Huang L; Lai YC; Grebogi C
    Chaos; 2011 Mar; 21(1):013102. PubMed ID: 21456816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.