These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 10062359)

  • 1. Energy-Loss-Straggling Experiments with Relativistic Heavy Ions in Solids.
    Scheidenberger C; Geissel H; Mikkelsen HH; Nickel F; Czajkowski S; Folger H; Irnich H; Münzenberg G; Schwab W; Stöhlker T; Suzuki T; Voss B
    Phys Rev Lett; 1996 Nov; 77(19):3987-3990. PubMed ID: 10062359
    [No Abstract]   [Full Text] [Related]  

  • 2. Drastic enhancement of energy-loss straggling of relativistic heavy ions due to charge-state fluctuations.
    Weick H; Geissel H; Scheidenberger C; Attallah F; Cortina D; Hausmann M; Munzenberg G; Radon T; Schatz H; Schmidt K; Stadlmann J; Summerer K; Winkler M
    Phys Rev Lett; 2000 Sep; 85(13):2725-8. PubMed ID: 10991218
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast ion surface energy loss and straggling in the surface wake fields.
    Nandi T; Haris K; Hala ; Singh G; Kumar P; Kumar R; Saini SK; Khan SA; Jhingan A; Verma P; Tauheed A; Mehta D; Berry HG
    Phys Rev Lett; 2013 Apr; 110(16):163203. PubMed ID: 23821777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase transitions in solids stimulated by simultaneous exposure to high pressure and relativistic heavy ions.
    Glasmacher UA; Lang M; Keppler H; Langenhorst F; Neumann R; Schardt D; Trautmann C; Wagner GA
    Phys Rev Lett; 2006 May; 96(19):195701. PubMed ID: 16803109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear energy-loss straggling of slow ions in solids.
    Ashley JC; Gras-Marti A; Echenique PM
    Phys Rev A Gen Phys; 1986 Sep; 34(3):2495-2498. PubMed ID: 9897545
    [No Abstract]   [Full Text] [Related]  

  • 6. A combined molecular dynamics and Monte Carlo simulation of the spatial distribution of energy deposition by proton beams in liquid water.
    Garcia-Molina R; Abril I; Heredia-Avalos S; Kyriakou I; Emfietzoglou D
    Phys Med Biol; 2011 Oct; 56(19):6475-93. PubMed ID: 21934189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heavy quark energy loss in high multiplicity proton-proton collisions at the LHC.
    Vogel S; Gossiaux PB; Werner K; Aichelin J
    Phys Rev Lett; 2011 Jul; 107(3):032302. PubMed ID: 21838351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relevance of very low energy ions for heavy-ion therapy.
    Elsässer T; Gemmel A; Scholz M; Schardt D; Krämer M
    Phys Med Biol; 2009 Apr; 54(7):N101-6. PubMed ID: 19287080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclear interactions in heavy ion transport and event-based risk models.
    Cucinotta FA; Plante I; Ponomarev AL; Kim MH
    Radiat Prot Dosimetry; 2011 Feb; 143(2-4):384-90. PubMed ID: 21242169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiative and collisional jet energy loss in the quark-gluon plasma at the BNL relativistic heavy ion collider.
    Qin GY; Ruppert J; Gale C; Jeon S; Moore GD; Mustafa MG
    Phys Rev Lett; 2008 Feb; 100(7):072301. PubMed ID: 18352542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An analytical model for calculating microdosimetric distributions from heavy ions in nanometer site targets.
    Czopyk L; Olko P
    Radiat Prot Dosimetry; 2006; 122(1-4):36-40. PubMed ID: 17351268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy loss straggling of 5.486 MeV alpha particles in Melinex, Al, Ni and Cu.
    Ibrahim DI; Al-Bedri MB
    Appl Radiat Isot; 2012 Apr; 70(4):617-9. PubMed ID: 22221464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water equivalent properties of materials commonly used in proton dosimetry.
    de Vera P; Abril I; Garcia-Molina R
    Appl Radiat Isot; 2014 Jan; 83 Pt B():122-7. PubMed ID: 23478093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An analytical model for light ion pencil beam dose distributions: multiple scattering of primary and secondary ions.
    Hollmark M; Gudowska I; Belkić Dz; Brahme A; Sobolevsky N
    Phys Med Biol; 2008 Jul; 53(13):3477-91. PubMed ID: 18547916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relativistic kinetic theory of pitch angle scattering, slowing down, and energy deposition in a plasma.
    Robiche J; Rax JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046405. PubMed ID: 15600528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy and Z2 dependences of energy straggling for fast proton beams passing through solids.
    Kido Y
    Phys Rev B Condens Matter; 1986 Jul; 34(1):73-77. PubMed ID: 9939236
    [No Abstract]   [Full Text] [Related]  

  • 17. Relativistic hydrodynamic scaling from the dynamics of quantum field theory.
    Bettencourt LM; Cooper F; Pao K
    Phys Rev Lett; 2002 Sep; 89(11):112301. PubMed ID: 12225137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The radiobiological and physical basis for radiotherapy with protons and heavier ions.
    Kraft G
    Strahlenther Onkol; 1990 Jan; 166(1):10-3. PubMed ID: 2154042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy straggling of low-energy ion beam in a charge exchange cell for negative ion production.
    Takeuchi S; Sasao M; Sugawara H; Tanaka N; Kisaki M; Okamoto A; Shinto K; Kitajima S; Nishiura M; Wada M
    Rev Sci Instrum; 2008 Feb; 79(2 Pt 2):02A509. PubMed ID: 18315130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laser-driven three-stage heavy-ion acceleration from relativistic laser-plasma interaction.
    Wang HY; Lin C; Liu B; Sheng ZM; Lu HY; Ma WJ; Bin JH; Schreiber J; He XT; Chen JE; Zepf M; Yan XQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013107. PubMed ID: 24580346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.