These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 10063355)

  • 1. Ultramicroscopic structures of the leptomeninx of mice with communicating hydrocephalus induced by human recombinant transforming growth factor-beta 1.
    Nitta J; Tada T
    Neurol Med Chir (Tokyo); 1998 Dec; 38(12):819-24; discussion 824-5. PubMed ID: 10063355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of cerebrospinal fluid flow dynamics in TGF-beta 1 induced chronic hydrocephalic mice.
    Moinuddin SM; Tada T
    Neurol Res; 2000 Mar; 22(2):215-22. PubMed ID: 10763513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction of communicating hydrocephalus in mice by intrathecal injection of human recombinant transforming growth factor-beta 1.
    Tada T; Kanaji M; Kobayashi S
    J Neuroimmunol; 1994 Mar; 50(2):153-8. PubMed ID: 8120136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intraventricular administration of hepatocyte growth factor treats mouse communicating hydrocephalus induced by transforming growth factor beta1.
    Tada T; Zhan H; Tanaka Y; Hongo K; Matsumoto K; Nakamura T
    Neurobiol Dis; 2006 Mar; 21(3):576-86. PubMed ID: 16352434
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heavy water inhibiting the expression of transforming growth factor-beta1 and the development of kaolin-induced hydrocephalus in mice.
    Hatta J; Hatta T; Moritake K; Otani H
    J Neurosurg; 2006 Apr; 104(4 Suppl):251-8. PubMed ID: 16619636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decorin prevents the development of juvenile communicating hydrocephalus.
    Botfield H; Gonzalez AM; Abdullah O; Skjolding AD; Berry M; McAllister JP; Logan A
    Brain; 2013 Sep; 136(Pt 9):2842-58. PubMed ID: 23983032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A murine model of communicating hydrocephalus: Role of TGF-beta1.
    Kanaji M; Tada T; Kobayashi S
    J Clin Neurosci; 1997 Jan; 4(1):51-6. PubMed ID: 18638924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrastructure of the mouse leptomeninx.
    Oda Y; Nakanishi I
    J Comp Neurol; 1984 May; 225(3):448-57. PubMed ID: 6202729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transforming growth factor-betas in a rat model of neonatal posthaemorrhagic hydrocephalus.
    Cherian S; Thoresen M; Silver IA; Whitelaw A; Love S
    Neuropathol Appl Neurobiol; 2004 Dec; 30(6):585-600. PubMed ID: 15540999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An electron microscopic study of the leptomeninx and associated cells of the aged mouse.
    Sturrock RR
    Anat Anz; 1990; 171(3):159-64. PubMed ID: 2268056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Connective tissue growth factor causes persistent proalpha2(I) collagen gene expression induced by transforming growth factor-beta in a mouse fibrosis model.
    Chujo S; Shirasaki F; Kawara S; Inagaki Y; Kinbara T; Inaoki M; Takigawa M; Takehara K
    J Cell Physiol; 2005 May; 203(2):447-56. PubMed ID: 15605379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a model of hydrocephalus in transgenic mice.
    Cohen AR; Leifer DW; Zechel M; Flaningan DP; Lewin JS; Lust WD
    J Neurosurg; 1999 Dec; 91(6):978-88. PubMed ID: 10584844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Communicating hydrocephalus in newborn hamsters and cats following vaccinia virus infection.
    Davis LE
    J Neurosurg; 1981 Jun; 54(6):767-72. PubMed ID: 7241186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transforming growth factor-beta1: a possible signal molecule for posthemorrhagic hydrocephalus?
    Whitelaw A; Christie S; Pople I
    Pediatr Res; 1999 Nov; 46(5):576-80. PubMed ID: 10541321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disturbed spatial learning of rats after intraventricular administration of transforming growth factor-beta 1.
    Nakazato F; Tada T; Sekiguchi Y; Murakami K; Yanagisawa S; Tanaka Y; Hongo K
    Neurol Med Chir (Tokyo); 2002 Apr; 42(4):151-6; discussion 157. PubMed ID: 12013666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into the pathogenesis of hydrocephalus from transgenic and experimental animal models.
    Crews L; Wyss-Coray T; Masliah E
    Brain Pathol; 2004 Jul; 14(3):312-6. PubMed ID: 15446587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrastructure of the leptomeninx of the fetal ferret spinal cord and cerebrum.
    Sturrock RR
    Anat Anz; 1990; 171(5):307-12. PubMed ID: 2088147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cannabinoid receptor 2 activation restricts fibrosis and alleviates hydrocephalus after intraventricular hemorrhage.
    Tan Q; Chen Q; Feng Z; Shi X; Tang J; Tao Y; Jiang B; Tan L; Feng H; Zhu G; Yang Y; Chen Z
    Brain Res; 2017 Jan; 1654(Pt A):24-33. PubMed ID: 27769788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An experimental model of communicating hydrocephalus in C57 black mouse.
    Kanno T; Nakamura T; Jain VK; Sugimoto T
    Acta Neurochir (Wien); 1987; 86(3-4):111-4. PubMed ID: 3630781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alterations in matrix metalloproteinase-9 levels and tissue inhibitor of matrix metalloproteinases-1 expression in a transforming growth factor-beta transgenic model of hydrocephalus.
    Zechel J; Gohil H; Lust WD; Cohen A
    J Neurosci Res; 2002 Sep; 69(5):662-8. PubMed ID: 12210832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.