These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 10063355)
21. Ultrastructural analysis of a murine model of congenital hydrocephalus produced by overexpression of transforming growth factor-beta1 in the central nervous system. Aliev G; Miller JP; Leifer DW; Obrenovich ME; Shenk JC; Smith MA; Lamanna JC; Perry G; Lust DW; Cohen AR J Submicrosc Cytol Pathol; 2006; 38(2-3):85-91. PubMed ID: 17784635 [TBL] [Abstract][Full Text] [Related]
22. Sustained activation of fibroblast transforming growth factor-beta/Smad signaling in a murine model of scleroderma. Takagawa S; Lakos G; Mori Y; Yamamoto T; Nishioka K; Varga J J Invest Dermatol; 2003 Jul; 121(1):41-50. PubMed ID: 12839562 [TBL] [Abstract][Full Text] [Related]
23. Characterization of juvenile and young adult mice following induction of hydrocephalus with kaolin. Lopes Lda S; Slobodian I; Del Bigio MR Exp Neurol; 2009 Sep; 219(1):187-96. PubMed ID: 19460371 [TBL] [Abstract][Full Text] [Related]
25. Transforming growth factor-beta 1 and collagen gene expression during postnatal skin development and fibrosis in the tight-skin mouse. Pablos JL; Everett ET; Harley R; LeRoy EC; Norris JS Lab Invest; 1995 Jun; 72(6):670-8. PubMed ID: 7783425 [TBL] [Abstract][Full Text] [Related]
26. Blockade of TGF-β/Smad signaling by the small compound HPH-15 ameliorates experimental skin fibrosis. Luong VH; Chino T; Oyama N; Matsushita T; Sasaki Y; Ogura D; Niwa SI; Biswas T; Hamasaki A; Fujita M; Okamoto Y; Otsuka M; Ihn H; Hasegawa M Arthritis Res Ther; 2018 Mar; 20(1):46. PubMed ID: 29544542 [TBL] [Abstract][Full Text] [Related]
27. Induction of subcutaneous tissue fibrosis in newborn mice by transforming growth factor beta-simultaneous application with basic fibroblast growth factor causes persistent fibrosis. Shinozaki M; Kawara S; Hayashi N; Kakinuma T; Igarashi A; Takehara K Biochem Biophys Res Commun; 1997 Aug; 237(2):292-6. PubMed ID: 9268703 [TBL] [Abstract][Full Text] [Related]
28. Cerebral blood flow alterations in progressive communicating hydrocephalus: transcranial Doppler ultrasonography assessment in an experimental model. Cosan TE; Gucuyener D; Dundar E; Arslantas A; Vural M; Uzuner K; Tel E J Neurosurg; 2001 Feb; 94(2):265-9. PubMed ID: 11213964 [TBL] [Abstract][Full Text] [Related]
29. Structure of the leptomeninx and cerebral vessels of the cat. I. The leptomeninx and its vessels. Abadía-Fenoli F Angiology; 1969 Sep; 20(8):460-82. PubMed ID: 5812083 [No Abstract] [Full Text] [Related]
30. Cellular mechanisms involved in the stenosis and obliteration of the cerebral aqueduct of hyh mutant mice developing congenital hydrocephalus. Wagner C; Batiz LF; Rodríguez S; Jiménez AJ; Páez P; Tomé M; Pérez-Fígares JM; Rodríguez EM J Neuropathol Exp Neurol; 2003 Oct; 62(10):1019-40. PubMed ID: 14575238 [TBL] [Abstract][Full Text] [Related]
31. Ventricular dilation and elevated aqueductal pulsations in a new experimental model of communicating hydrocephalus. Wagshul ME; McAllister JP; Rashid S; Li J; Egnor MR; Walker ML; Yu M; Smith SD; Zhang G; Chen JJ; Benveniste H Exp Neurol; 2009 Jul; 218(1):33-40. PubMed ID: 19348801 [TBL] [Abstract][Full Text] [Related]
32. An ultrastructural study of the development of the leptomeninx of the mouse spinal cord. Sturrock RR Anat Anz; 1989; 169(5):321-7. PubMed ID: 2619079 [TBL] [Abstract][Full Text] [Related]
33. Chemokine receptors CCR2 and CX3CR1 regulate skin fibrosis in the mouse model of cytokine-induced systemic sclerosis. Arai M; Ikawa Y; Chujo S; Hamaguchi Y; Ishida W; Shirasaki F; Hasegawa M; Mukaida N; Fujimoto M; Takehara K J Dermatol Sci; 2013 Mar; 69(3):250-8. PubMed ID: 23142052 [TBL] [Abstract][Full Text] [Related]
34. [Experimental hydrocephalus of the rat, produced by cisternal injection of kaolin-solution (author's transl)]. Yamaki T; Odake G; Naruse S; Ibata Y; Nojo Y No Shinkei Geka; 1977 Jun; 5(6):537-40. PubMed ID: 578917 [TBL] [Abstract][Full Text] [Related]
35. The transcription factor GLI2 as a downstream mediator of transforming growth factor-β-induced fibroblast activation in SSc. Liang R; Šumová B; Cordazzo C; Mallano T; Zhang Y; Wohlfahrt T; Dees C; Ramming A; Krasowska D; Michalska-Jakubus M; Distler O; Schett G; Šenolt L; Distler JH Ann Rheum Dis; 2017 Apr; 76(4):756-764. PubMed ID: 27793816 [TBL] [Abstract][Full Text] [Related]
36. Lack of skin fibrosis in tight skin (TSK) mice with targeted mutation in the interleukin-4R alpha and transforming growth factor-beta genes. McGaha T; Saito S; Phelps RG; Gordon R; Noben-Trauth N; Paul WE; Bona C J Invest Dermatol; 2001 Jan; 116(1):136-43. PubMed ID: 11168809 [TBL] [Abstract][Full Text] [Related]
37. Evidence for transforming growth factor-beta expression in human leptomeningeal cells and transforming growth factor-beta-like activity in human cerebrospinal fluid. Johnson MD; Gold LI; Moses HL Lab Invest; 1992 Sep; 67(3):360-8. PubMed ID: 1328762 [TBL] [Abstract][Full Text] [Related]
38. The vitreus, an intraocular compartment of the leptomeninx. Electron microscopic observations on rat eyes. Gärtner J Doc Ophthalmol; 1986 Mar; 62(3):205-22. PubMed ID: 3698792 [TBL] [Abstract][Full Text] [Related]
39. Increased central nervous system production of extracellular matrix components and development of hydrocephalus in transgenic mice overexpressing transforming growth factor-beta 1. Wyss-Coray T; Feng L; Masliah E; Ruppe MD; Lee HS; Toggas SM; Rockenstein EM; Mucke L Am J Pathol; 1995 Jul; 147(1):53-67. PubMed ID: 7604885 [TBL] [Abstract][Full Text] [Related]
40. Communicating hydrocephalus in adult rats with kaolin obstruction of the basal cisterns or the cortical subarachnoid space. Li J; McAllister JP; Shen Y; Wagshul ME; Miller JM; Egnor MR; Johnston MG; Haacke EM; Walker ML Exp Neurol; 2008 Jun; 211(2):351-61. PubMed ID: 18433747 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]