These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 10063355)
61. An experimental model for chronic communicating hydrocephalus. James AE; Flor WJ; Bush M; Merz T; Rish BL J Neurosurg; 1974 Jul; 41(1):32-7. PubMed ID: 4210066 [No Abstract] [Full Text] [Related]
62. The nuclear receptor constitutive androstane receptor/NR1I3 enhances the profibrotic effects of transforming growth factor β and contributes to the development of experimental dermal fibrosis. Avouac J; Palumbo-Zerr K; Ruzehaji N; Tomcik M; Zerr P; Dees C; Distler A; Beyer C; Schneider H; Distler O; Schett G; Allanore Y; Distler JH Arthritis Rheumatol; 2014 Nov; 66(11):3140-50. PubMed ID: 25155144 [TBL] [Abstract][Full Text] [Related]
63. Increased levels of tumour necrosis factor alpha (TNFα) but not transforming growth factor-beta 1 (TGFβ1) are associated with the severity of congenital hydrocephalus in the hyh mouse. Jiménez AJ; Rodríguez-Pérez LM; Domínguez-Pinos MD; Gómez-Roldán MC; García-Bonilla M; Ho-Plagaro A; Roales-Buján R; Jiménez S; Roquero-Mañueco MC; Martínez-León MI; García-Martín ML; Cifuentes M; Ros B; Arráez MÁ; Vitorica J; Gutiérrez A; Pérez-Fígares JM Neuropathol Appl Neurobiol; 2014 Dec; 40(7):911-32. PubMed ID: 24707814 [TBL] [Abstract][Full Text] [Related]
64. FGF23 promotes myocardial fibrosis in mice through activation of β-catenin. Hao H; Li X; Li Q; Lin H; Chen Z; Xie J; Xuan W; Liao W; Bin J; Huang X; Kitakaze M; Liao Y Oncotarget; 2016 Oct; 7(40):64649-64664. PubMed ID: 27579618 [TBL] [Abstract][Full Text] [Related]
65. Nonsurgical therapy for hydrocephalus: a comprehensive and critical review. Del Bigio MR; Di Curzio DL Fluids Barriers CNS; 2016 Feb; 13():3. PubMed ID: 26846184 [TBL] [Abstract][Full Text] [Related]
66. Genetics of human hydrocephalus. Zhang J; Williams MA; Rigamonti D J Neurol; 2006 Oct; 253(10):1255-66. PubMed ID: 16773266 [TBL] [Abstract][Full Text] [Related]
67. Effect of anti-inflammatory agents on transforming growth factor beta over-expressing mouse brains: a model revised. Lacombe P; Mathews PM; Schmidt SD; Breidert T; Heneka MT; Landreth GE; Feinstein DL; Galea E J Neuroinflammation; 2004 Jul; 1(1):11. PubMed ID: 15285804 [TBL] [Abstract][Full Text] [Related]
68. Study of cerebrospinal fluid flow dynamics in TGF-beta 1 induced chronic hydrocephalic mice. Moinuddin SM; Tada T Neurol Res; 2000 Mar; 22(2):215-22. PubMed ID: 10763513 [TBL] [Abstract][Full Text] [Related]
69. Induction of communicating hydrocephalus in mice by intrathecal injection of human recombinant transforming growth factor-beta 1. Tada T; Kanaji M; Kobayashi S J Neuroimmunol; 1994 Mar; 50(2):153-8. PubMed ID: 8120136 [TBL] [Abstract][Full Text] [Related]
71. Heavy water inhibiting the expression of transforming growth factor-beta1 and the development of kaolin-induced hydrocephalus in mice. Hatta J; Hatta T; Moritake K; Otani H J Neurosurg; 2006 Apr; 104(4 Suppl):251-8. PubMed ID: 16619636 [TBL] [Abstract][Full Text] [Related]
72. Insights into the pathogenesis of hydrocephalus from transgenic and experimental animal models. Crews L; Wyss-Coray T; Masliah E Brain Pathol; 2004 Jul; 14(3):312-6. PubMed ID: 15446587 [TBL] [Abstract][Full Text] [Related]
73. Ultramicroscopic structures of the leptomeninx of mice with communicating hydrocephalus induced by human recombinant transforming growth factor-beta 1. Nitta J; Tada T Neurol Med Chir (Tokyo); 1998 Dec; 38(12):819-24; discussion 824-5. PubMed ID: 10063355 [TBL] [Abstract][Full Text] [Related]