These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 10064313)

  • 1. Molecular biology of biotin attachment to proteins.
    Chapman-Smith A; Cronan JE
    J Nutr; 1999 Feb; 129(2S Suppl):477S-484S. PubMed ID: 10064313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The enzymatic biotinylation of proteins: a post-translational modification of exceptional specificity.
    Chapman-Smith A; Cronan JE
    Trends Biochem Sci; 1999 Sep; 24(9):359-63. PubMed ID: 10470036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutational analysis of protein substrate presentation in the post-translational attachment of biotin to biotin domains.
    Polyak SW; Chapman-Smith A; Mulhern TD; Cronan JE; Wallace JC
    J Biol Chem; 2001 Feb; 276(5):3037-45. PubMed ID: 11042165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo enzymatic protein biotinylation.
    Chapman-Smith A; Cronan JE
    Biomol Eng; 1999 Dec; 16(1-4):119-25. PubMed ID: 10796994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipoylating and biotinylating enzymes contain a homologous catalytic module.
    Reche PA
    Protein Sci; 2000 Oct; 9(10):1922-9. PubMed ID: 11106165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotinylation in the hyperthermophile Aquifex aeolicus.
    Clarke DJ; Coulson J; Baillie R; Campopiano DJ
    Eur J Biochem; 2003 Mar; 270(6):1277-87. PubMed ID: 12631286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotinylation of proteins in vivo: a useful posttranslational modification for protein analysis.
    Cronan JE; Reed KE
    Methods Enzymol; 2000; 326():440-58. PubMed ID: 11036657
    [No Abstract]   [Full Text] [Related]  

  • 8. Characterization of the affinity of streptavidin toward a peptide sequence previously identified as a target substrate for biotinylation by the escherichia coli biotin holoenzyme synthetase, BirA.
    Scott CJ; Martin SL; Wallace A; Curran MD; Walker B
    Anal Biochem; 2000 Sep; 284(2):416-7. PubMed ID: 10964430
    [No Abstract]   [Full Text] [Related]  

  • 9. The C-terminal domain of biotin protein ligase from E. coli is required for catalytic activity.
    Chapman-Smith A; Mulhern TD; Whelan F; Cronan JE; Wallace JC
    Protein Sci; 2001 Dec; 10(12):2608-17. PubMed ID: 11714929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A conserved regulatory mechanism in bifunctional biotin protein ligases.
    Wang J; Beckett D
    Protein Sci; 2017 Aug; 26(8):1564-1573. PubMed ID: 28466579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A plasmid expression system for quantitative in vivo biotinylation of thioredoxin fusion proteins in Escherichia coli.
    Smith PA; Tripp BC; DiBlasio-Smith EA; Lu Z; LaVallie ER; McCoy JM
    Nucleic Acids Res; 1998 Mar; 26(6):1414-20. PubMed ID: 9490786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Function of a conserved sequence motif in biotin holoenzyme synthetases.
    Kwon K; Beckett D
    Protein Sci; 2000 Aug; 9(8):1530-9. PubMed ID: 10975574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotin protein ligase as you like it: Either extraordinarily specific or promiscuous protein biotinylation.
    Cronan JE
    Proteins; 2024 Apr; 92(4):435-448. PubMed ID: 37997490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heteronuclear NMR studies of the specificity of the post-translational modification of biotinyl domains by biotinyl protein ligase.
    Reche PA; Howard MJ; Broadhurst RW; Perham RN
    FEBS Lett; 2000 Aug; 479(3):93-8. PubMed ID: 10981714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligand-linked structural changes in the Escherichia coli biotin repressor: the significance of surface loops for binding and allostery.
    Streaker ED; Beckett D
    J Mol Biol; 1999 Sep; 292(3):619-32. PubMed ID: 10497026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversity in functional organization of class I and class II biotin protein ligase.
    Purushothaman S; Annamalai K; Tyagi AK; Surolia A
    PLoS One; 2011 Mar; 6(3):e16850. PubMed ID: 21390227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Profligate biotin synthesis in α-proteobacteria - a developing or degenerating regulatory system?
    Feng Y; Zhang H; Cronan JE
    Mol Microbiol; 2013 Apr; 88(1):77-92. PubMed ID: 23387333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A minimal peptide substrate in biotin holoenzyme synthetase-catalyzed biotinylation.
    Beckett D; Kovaleva E; Schatz PJ
    Protein Sci; 1999 Apr; 8(4):921-9. PubMed ID: 10211839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Substrate recognition characteristics of human holocarboxylase synthetase for biotin ligation.
    Lee CK; Cheong C; Jeon YH
    Biochem Biophys Res Commun; 2010 Jan; 391(1):455-60. PubMed ID: 19914215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural impact of human and Escherichia coli biotin carboxyl carrier proteins on biotin attachment.
    Healy S; McDonald MK; Wu X; Yue WW; Kochan G; Oppermann U; Gravel RA
    Biochemistry; 2010 Jun; 49(22):4687-94. PubMed ID: 20443544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.