BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 10064722)

  • 21. Role of arginine-82 in fast proton release during the bacteriorhodopsin photocycle: a time-resolved FT-IR study of purple membranes containing 15N-labeled arginine.
    Xiao Y; Hutson MS; Belenky M; Herzfeld J; Braiman MS
    Biochemistry; 2004 Oct; 43(40):12809-18. PubMed ID: 15461453
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal structures of archaerhodopsin-1 and -2: Common structural motif in archaeal light-driven proton pumps.
    Enami N; Yoshimura K; Murakami M; Okumura H; Ihara K; Kouyama T
    J Mol Biol; 2006 May; 358(3):675-85. PubMed ID: 16540121
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Excitation of the M intermediates of bacteriorhodopsin.
    Tóth-Boconádi R; Dér A; Fábián L; Taneva SG; Keszthelyi L
    Photochem Photobiol; 2009; 85(2):609-13. PubMed ID: 19222799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An atomic model for the structure of bacteriorhodopsin, a seven-helix membrane protein.
    Ceska TA; Henderson R; Baldwin JM; Zemlin F; Beckmann E; Downing K
    Acta Physiol Scand Suppl; 1992; 607():31-40. PubMed ID: 1449073
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electron diffraction analysis of structural changes in the photocycle of bacteriorhodopsin.
    Subramaniam S; Gerstein M; Oesterhelt D; Henderson R
    EMBO J; 1993 Jan; 12(1):1-8. PubMed ID: 8428572
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electron diffraction studies of light-induced conformational changes in the Leu-93 --> Ala bacteriorhodopsin mutant.
    Subramaniam S; Faruqi AR; Oesterhelt D; Henderson R
    Proc Natl Acad Sci U S A; 1997 Mar; 94(5):1767-72. PubMed ID: 9050853
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface of bacteriorhodopsin revealed by high-resolution electron crystallography.
    Kimura Y; Vassylyev DG; Miyazawa A; Kidera A; Matsushima M; Mitsuoka K; Murata K; Hirai T; Fujiyoshi Y
    Nature; 1997 Sep; 389(6647):206-11. PubMed ID: 9296502
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Picosecond multidimensional fluorescence spectroscopy: a tool to measure real-time protein dynamics during function.
    Kim TY; Winkler K; Alexiev U
    Photochem Photobiol; 2007; 83(2):378-84. PubMed ID: 17117889
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Volume and enthalpy changes of proton transfers in the bacteriorhodopsin photocycle studied by millisecond time-resolved photopressure measurements.
    Liu Y; Edens GJ; Grzymski J; Mauzerall D
    Biochemistry; 2008 Jul; 47(29):7752-61. PubMed ID: 18578542
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Altered hydrogen bonding of Arg82 during the proton pump cycle of bacteriorhodopsin: a low-temperature polarized FTIR spectroscopic study.
    Tanimoto T; Shibata M; Belenky M; Herzfeld J; Kandori H
    Biochemistry; 2004 Jul; 43(29):9439-47. PubMed ID: 15260486
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modeling of halorhodopsin and rhodopsin based on bacteriorhodopsin.
    Neumüller M; Jähnig F
    Proteins; 1996 Oct; 26(2):146-56. PubMed ID: 8916222
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photoisomerization and proton transfer in photoactive yellow protein.
    Thompson MJ; Bashford D; Noodleman L; Getzoff ED
    J Am Chem Soc; 2003 Jul; 125(27):8186-94. PubMed ID: 12837088
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Trapping and spectroscopic identification of the photointermediates of bacteriorhodopsin at low temperatures.
    Balashov SP; Ebrey TG
    Photochem Photobiol; 2001 May; 73(5):453-62. PubMed ID: 11367564
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural changes in bacteriorhodopsin following retinal photoisomerization from the 13-cis form.
    Mizuide N; Shibata M; Friedman N; Sheves M; Belenky M; Herzfeld J; Kandori H
    Biochemistry; 2006 Sep; 45(35):10674-81. PubMed ID: 16939219
    [TBL] [Abstract][Full Text] [Related]  

  • 35. G-protein-coupled receptor domain overexpression in Halobacterium salinarum: long-range transmembrane interactions in heptahelical membrane proteins.
    Jaakola VP; Rehn M; Moeller M; Alexiev U; Goldman A; Turner GJ
    Proteins; 2005 Aug; 60(3):412-23. PubMed ID: 15971205
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural alterations for proton translocation in the M state of wild-type bacteriorhodopsin.
    Sass HJ; Büldt G; Gessenich R; Hehn D; Neff D; Schlesinger R; Berendzen J; Ormos P
    Nature; 2000 Aug; 406(6796):649-53. PubMed ID: 10949308
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Picosecond time-resolved ultraviolet resonance Raman spectroscopy of bacteriorhodopsin: primary protein response to the photoisomerization of retinal.
    Mizuno M; Shibata M; Yamada J; Kandori H; Mizutani Y
    J Phys Chem B; 2009 Sep; 113(35):12121-8. PubMed ID: 19678662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of the membrane potential on the protonation of bacteriorhodopsin: insights from electrostatic calculations into the regulation of proton pumping.
    Bombarda E; Becker T; Ullmann GM
    J Am Chem Soc; 2006 Sep; 128(37):12129-39. PubMed ID: 16967962
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural changes in bacteriorhodopsin during proton translocation revealed by neutron diffraction.
    Dencher NA; Dresselhaus D; Zaccai G; Büldt G
    Proc Natl Acad Sci U S A; 1989 Oct; 86(20):7876-9. PubMed ID: 2554293
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Active internal waters in the bacteriorhodopsin photocycle. A comparative study of the L and M intermediates at room and cryogenic temperatures by infrared spectroscopy.
    Lórenz-Fonfría VA; Furutani Y; Kandori H
    Biochemistry; 2008 Apr; 47(13):4071-81. PubMed ID: 18321068
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.