These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 10065710)

  • 1. Directed evolution converts subtilisin E into a functional equivalent of thermitase.
    Zhao H; Arnold FH
    Protein Eng; 1999 Jan; 12(1):47-53. PubMed ID: 10065710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporation of a stabilizing Ca(2+)-binding loop into subtilisin BPN'.
    Braxton S; Wells JA
    Biochemistry; 1992 Sep; 31(34):7796-801. PubMed ID: 1510966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed evolution of subtilisin E in Bacillus subtilis to enhance total activity in aqueous dimethylformamide.
    You L; Arnold FH
    Protein Eng; 1996 Jan; 9(1):77-83. PubMed ID: 9053906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directed evolution study of temperature adaptation in a psychrophilic enzyme.
    Miyazaki K; Wintrode PL; Grayling RA; Rubingh DN; Arnold FH
    J Mol Biol; 2000 Apr; 297(4):1015-26. PubMed ID: 10736234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amino acid sequence of the small cyanogen bromide peptide of thermitase, a thermostable serine proteinase from Thermoactinomyces vulgaris. Relation to the subtilisins.
    Baudys M; Kostka V; Grüner K; Hausdorf G; Höhne WE
    Int J Pept Protein Res; 1982 Jan; 19(1):32-9. PubMed ID: 6749726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino acid sequence of the tryptic SH-peptide of thermitase, a thermostable serine proteinase from Thermoactinomyces vulgaris. Relation to the subtilisins.
    Baudys M; Kostka V; Hausdorf G; Fittkau S; Höhne WE
    Int J Pept Protein Res; 1983 Jul; 22(1):66-72. PubMed ID: 6350202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of the thermostability of subtilisin E by introduction of a disulfide bond engineered on the basis of structural comparison with a thermophilic serine protease.
    Takagi H; Takahashi T; Momose H; Inouye M; Maeda Y; Matsuzawa H; Ohta T
    J Biol Chem; 1990 Apr; 265(12):6874-8. PubMed ID: 2108962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterns of adaptation in a laboratory evolved thermophilic enzyme.
    Wintrode PL; Miyazaki K; Arnold FH
    Biochim Biophys Acta; 2001 Sep; 1549(1):1-8. PubMed ID: 11566363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of thermitase at 1.4 A resolution.
    Teplyakov AV; Kuranova IP; Harutyunyan EH; Vainshtein BK; Frömmel C; Höhne WE; Wilson KS
    J Mol Biol; 1990 Jul; 214(1):261-79. PubMed ID: 2196375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering subtilisin YaB: restriction of substrate specificity by the substitution of Gly124 and Gly151 with Ala.
    Mei HC; Liaw YC; Li YC; Wang DC; Takagi H; Tsai YC
    Protein Eng; 1998 Feb; 11(2):109-17. PubMed ID: 9605545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics refinement of a thermitase-eglin-c complex at 1.98 A resolution and comparison of two crystal forms that differ in calcium content.
    Gros P; Betzel C; Dauter Z; Wilson KS; Hol WG
    J Mol Biol; 1989 Nov; 210(2):347-67. PubMed ID: 2689655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Homology modelling of two subtilisin-like proteases from the hyperthermophilic archaea Pyrococcus furiosus and Thermococcus stetteri.
    Voorhorst WG; Warner A; de Vos WM; Siezen RJ
    Protein Eng; 1997 Aug; 10(8):905-14. PubMed ID: 9415440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermitase, a thermostable subtilisin: comparison of predicted and experimental structures and the molecular cause of thermostability.
    Frömmel C; Sander C
    Proteins; 1989; 5(1):22-37. PubMed ID: 2664764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Crystal structure of thermitase and stability of subtilisins].
    Tepliakov AV; Kuranova IP; Arutiunian EG; Frömmel C; Höhne WE
    Bioorg Khim; 1990 Apr; 16(4):437-47. PubMed ID: 2198028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gly or Ala substitutions for Pro(210)Thr(211)Asn(212) at the β8-β9 turn of subtilisin Carlsberg increase the catalytic rate and decrease thermostability.
    Fuchita N; Arita S; Ikuta J; Miura M; Shimomura K; Motoshima H; Watanabe K
    Biochim Biophys Acta; 2012 Apr; 1824(4):620-6. PubMed ID: 22326746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermitase, a thermostable serine protease from Thermoactinomyces vulgaris. Classification as a subtilisin-type protease.
    Hausdorf G; Krüger K; Höhne WE
    Int J Pept Protein Res; 1980 May; 15(5):420-9. PubMed ID: 7002820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calcium-mediated thermostability in the subtilisin superfamily: the crystal structure of Bacillus Ak.1 protease at 1.8 A resolution.
    Smith CA; Toogood HS; Baker HM; Daniel RM; Baker EN
    J Mol Biol; 1999 Dec; 294(4):1027-40. PubMed ID: 10588904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Furilisin: a variant of subtilisin BPN' engineered for cleaving tribasic substrates.
    Ballinger MD; Tom J; Wells JA
    Biochemistry; 1996 Oct; 35(42):13579-85. PubMed ID: 8885837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new substrate and two inhibitors applicable for thermitase, subtilisin BPN' and alpha-chymotrypsin. Comparison of kinetic parameters with customary substrates and inhibitors.
    Brömme D; Fittkau S
    Biomed Biochim Acta; 1985; 44(7-8):1089-94. PubMed ID: 3910035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of the alkaline proteinase Savinase from Bacillus lentus at 1.4 A resolution.
    Betzel C; Klupsch S; Papendorf G; Hastrup S; Branner S; Wilson KS
    J Mol Biol; 1992 Jan; 223(2):427-45. PubMed ID: 1738156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.