These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 10065711)

  • 1. The role of the flap residue, threonine 77, in the activation and catalytic activity of pepsin A.
    Okoniewska M; Tanaka T; Yada RY
    Protein Eng; 1999 Jan; 12(1):55-61. PubMed ID: 10065711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The pepsin residue glycine-76 contributes to active-site loop flexibility and participates in catalysis.
    Okoniewska M; Tanaka T; Yada RY
    Biochem J; 2000 Jul; 349(Pt 1):169-77. PubMed ID: 10861225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The sole lysine residue in porcine pepsin works as a key residue for catalysis and conformational flexibility.
    Cottrell TJ; Harris LJ; Tanaka T; Yada RY
    J Biol Chem; 1995 Aug; 270(34):19974-8. PubMed ID: 7650014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering of porcine pepsin. Alteration of S1 substrate specificity of pepsin to those of fungal aspartic proteinases by site-directed mutagenesis.
    Shintani T; Nomura K; Ichishima E
    J Biol Chem; 1997 Jul; 272(30):18855-61. PubMed ID: 9228062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering the substrate specificity of rhizopuspepsin: the role of Asp 77 of fungal aspartic proteinases in facilitating the cleavage of oligopeptide substrates with lysine in P1.
    Lowther WT; Majer P; Dunn BM
    Protein Sci; 1995 Apr; 4(4):689-702. PubMed ID: 7613467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of a residue at position 75 in the catalytic mechanism of a fungal aspartic proteinase, Rhizomucor pusillus pepsin. Replacement of tyrosine 75 on the flap by asparagine enhances catalytic efficiency.
    Park YN; Aikawa J; Nishiyama M; Horinouchi S; Beppu T
    Protein Eng; 1996 Oct; 9(10):869-75. PubMed ID: 8931126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contribution of a prosegment lysine residue to the function and structure of porcine pepsinogen A and its active form pepsin A.
    Richter C; Tanaka T; Koseki T; Yada RY
    Eur J Biochem; 1999 May; 261(3):746-52. PubMed ID: 10215892
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural characterization of activation 'intermediate 2' on the pathway to human gastricsin.
    Khan AR; Cherney MM; Tarasova NI; James MN
    Nat Struct Biol; 1997 Dec; 4(12):1010-5. PubMed ID: 9406551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the mechanism of prosegment-catalyzed folding by solution NMR spectroscopy.
    Wang S; Horimoto Y; Dee DR; Yada RY
    J Biol Chem; 2014 Jan; 289(2):697-707. PubMed ID: 24265313
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Refined structure of porcine pepsinogen at 1.8 A resolution.
    Sielecki AR; Fujinaga M; Read RJ; James MN
    J Mol Biol; 1991 Jun; 219(4):671-92. PubMed ID: 2056534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Replacements of amino acid residues at subsites and their effects on the catalytic properties of Rhizomucor pusillus pepsin, an aspartic proteinase from Rhizomucor pusillus.
    Aikawa J; Park YN; Sugiyama M; Nishiyama M; Horinouchi S; Beppu T
    J Biochem; 2001 May; 129(5):791-4. PubMed ID: 11328603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of crystal structures of aspartic proteinases: on the role of amino acid residues adjacent to the catalytic site of pepsin-like enzymes.
    Andreeva NS; Rumsh LD
    Protein Sci; 2001 Dec; 10(12):2439-50. PubMed ID: 11714911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray analyses of aspartic proteinases. V. Structure and refinement at 2.0 A resolution of the aspartic proteinase from Mucor pusillus.
    Newman M; Watson F; Roychowdhury P; Jones H; Badasso M; Cleasby A; Wood SP; Tickle IJ; Blundell TL
    J Mol Biol; 1993 Mar; 230(1):260-83. PubMed ID: 8450540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of Tyr13 and Phe219 in the unique substrate specificity of pepsin B.
    Kageyama T
    Biochemistry; 2006 Dec; 45(48):14415-26. PubMed ID: 17128981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Foldase and inhibitor functionalities of the pepsinogen prosegment are encoded within discrete segments of the 44 residue domain.
    Dee DR; Myers B; Yada RY
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1300-6. PubMed ID: 26003941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering the residual side chains of HAP phytases to improve their pepsin resistance and catalytic efficiency.
    Niu C; Yang P; Luo H; Huang H; Wang Y; Yao B
    Sci Rep; 2017 Feb; 7():42133. PubMed ID: 28186144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-terminal portion acts as an initiator of the inactivation of pepsin at neutral pH.
    Tanaka T; Yada RY
    Protein Eng; 2001 Sep; 14(9):669-74. PubMed ID: 11707613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification and characterization of porcine pepsinogen B and pepsin B.
    Nielsen PK; Foltmann B
    Arch Biochem Biophys; 1995 Oct; 322(2):417-22. PubMed ID: 7574716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tyrosine 75 on the flap contributes to enhance catalytic efficiency of a fungal aspartic proteinase, Mucor pusillus pepsin.
    Beppu T; Park YN; Aikawa J; Nishiyama M; Horinouchi S
    Adv Exp Med Biol; 1995; 362():501-9. PubMed ID: 8540364
    [No Abstract]   [Full Text] [Related]  

  • 20. Recombinant prosegment peptide acts as a folding catalyst and inhibitor of native pepsin.
    Dee DR; Filonowicz S; Horimoto Y; Yada RY
    Biochim Biophys Acta; 2009 Dec; 1794(12):1795-801. PubMed ID: 19715777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.