These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 10065842)

  • 1. Stochastic ICA contrast maximisation using OJA's nonlinear PCA algorithm.
    Girolami M; Fyfe C
    Int J Neural Syst; 1997; 8(5-6):661-78. PubMed ID: 10065842
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in blind source separation (BSS) and independent component analysis (ICA) for nonlinear mixtures.
    Jutten C; Karhunen J
    Int J Neural Syst; 2004 Oct; 14(5):267-92. PubMed ID: 15593377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Independent factor analysis.
    Attias H
    Neural Comput; 1999 May; 11(4):803-51. PubMed ID: 10226184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An algorithm for separation of mixed sparse and Gaussian sources.
    Akkalkotkar A; Brown KS
    PLoS One; 2017; 12(4):e0175775. PubMed ID: 28414814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Convergence analysis of a deterministic discrete time system of Oja's PCA learning algorithm.
    Yi Z; Ye M; Lv JC; Tan KK
    IEEE Trans Neural Netw; 2005 Nov; 16(6):1318-28. PubMed ID: 16342477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PWC-ICA: A Method for Stationary Ordered Blind Source Separation with Application to EEG.
    Ball K; Bigdely-Shamlo N; Mullen T; Robbins K
    Comput Intell Neurosci; 2016; 2016():9754813. PubMed ID: 27340397
    [TBL] [Abstract][Full Text] [Related]  

  • 7. WASICA: An effective wavelet-shrinkage based ICA model for brain fMRI data analysis.
    Wang N; Zeng W; Shi Y; Ren T; Jing Y; Yin J; Yang J
    J Neurosci Methods; 2015 May; 246():75-96. PubMed ID: 25791013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Error-Gated Hebbian Rule: A Local Learning Rule for Principal and Independent Component Analysis.
    Isomura T; Toyoizumi T
    Sci Rep; 2018 Jan; 8(1):1835. PubMed ID: 29382868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Least-squares methods for blind source separation based on nonlinear PCA.
    Pajunen P; Karhunen J
    Int J Neural Syst; 1997; 8(5-6):601-12. PubMed ID: 10065838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear and noisy extension of independent component analysis: theory and its application to a pitch sensation model.
    Maeda S; Song WJ; Ishii S
    Neural Comput; 2005 Jan; 17(1):115-44. PubMed ID: 15563750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fetal electrocardiogram extraction by sequential source separation in the wavelet domain.
    Jafari MG; Chambers JA
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):390-400. PubMed ID: 15759569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Online kernel principal component analysis: a reduced-order model.
    Honeine P
    IEEE Trans Pattern Anal Mach Intell; 2012 Sep; 34(9):1814-26. PubMed ID: 22201059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A two-step super-Gaussian independent component analysis approach for fMRI data.
    Ge R; Yao L; Zhang H; Long Z
    Neuroimage; 2015 Sep; 118():344-58. PubMed ID: 26057592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the Achievability of Blind Source Separation for High-Dimensional Nonlinear Source Mixtures.
    Isomura T; Toyoizumi T
    Neural Comput; 2021 May; 33(6):1433-1468. PubMed ID: 34496387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New monitoring technique with an ICA algorithm in the wastewater treatment process.
    Lee JM; Yoo CK; Lee IB
    Water Sci Technol; 2003; 47(12):49-56. PubMed ID: 12926669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlinear and extra-classical receptive field properties and the statistics of natural scenes.
    Zetzsche C; Röhrbein F
    Network; 2001 Aug; 12(3):331-50. PubMed ID: 11563533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new concept for separability problems in blind source separation.
    Theis FJ
    Neural Comput; 2004 Sep; 16(9):1827-50. PubMed ID: 15265324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multivariate slow feature analysis and decorrelation filtering for blind source separation.
    Minh HQ; Wiskott L
    IEEE Trans Image Process; 2013 Jul; 22(7):2737-50. PubMed ID: 23591489
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Independent component analysis based on marginal density estimation using weighted Parzen windows.
    Wu JM; Chen MH; Lin ZH
    Neural Netw; 2008 Sep; 21(7):914-24. PubMed ID: 18539428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A class of neural networks for independent component analysis.
    Karhunen J; Oja E; Wang L; Vigario R; Joutsensalo J
    IEEE Trans Neural Netw; 1997; 8(3):486-504. PubMed ID: 18255654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.