These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 10066141)
41. Overactivation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate and N-methyl-D-aspartate but not kainate receptors inhibits phosphatidylcholine synthesis before excitotoxic neuronal death. Gasull T; DeGregorio-Rocasolano N; Trullas R J Neurochem; 2001 Apr; 77(1):13-22. PubMed ID: 11279257 [TBL] [Abstract][Full Text] [Related]
42. Ca2+ influx through glutamate receptor-associated channels in retina cells correlates with neuronal cell death. Ferreira IL; Duarte CB; Carvalho AP Eur J Pharmacol; 1996 Apr; 302(1-3):153-62. PubMed ID: 8791003 [TBL] [Abstract][Full Text] [Related]
43. Electrophysiological and neurochemical characterization of neurons of the medial preoptic area in Japanese quail (Coturnix japonica). Cornil CA; Seutin V; Motte P; Balthazart J Brain Res; 2004 Dec; 1029(2):224-40. PubMed ID: 15542078 [TBL] [Abstract][Full Text] [Related]
44. Inwardly rectifying and Ca2+-permeable AMPA-type glutamate receptor channels in rat neocortical neurons. Itazawa SI; Isa T; Ozawa S J Neurophysiol; 1997 Nov; 78(5):2592-601. PubMed ID: 9356409 [TBL] [Abstract][Full Text] [Related]
45. Differential effects of excitatory amino acids on mesencephalic neurons expressing either calretinin or tyrosine hydroxylase in primary cultures. Isaacs KR; de Erausquin G; Strauss KI; Jacobowitz DM; Hanbauer I Brain Res Mol Brain Res; 1996 Feb; 36(1):114-26. PubMed ID: 9011746 [TBL] [Abstract][Full Text] [Related]
46. Ca(2+) influx through AMPA or kainate receptors alone is sufficient to initiate excitotoxicity in cultured oligodendrocytes. Alberdi E; Sánchez-Gómez MV; Marino A; Matute C Neurobiol Dis; 2002 Mar; 9(2):234-43. PubMed ID: 11895374 [TBL] [Abstract][Full Text] [Related]
47. Distribution of neurones expressing inwardly rectifying and Ca(2+)-permeable AMPA receptors in rat hippocampal slices. Isa T; Itazawa S; Iino M; Tsuzuki K; Ozawa S J Physiol; 1996 Mar; 491 ( Pt 3)(Pt 3):719-33. PubMed ID: 8815206 [TBL] [Abstract][Full Text] [Related]
48. 6-Cyano-7-nitroquinoxaline-2,3-dione as an excitatory amino acid antagonist in area CA1 of rat hippocampus. Blake JF; Yates RG; Brown MW; Collingridge GL Br J Pharmacol; 1989 May; 97(1):71-6. PubMed ID: 2566354 [TBL] [Abstract][Full Text] [Related]
49. Stimulation of oxytocin release in the lactating rat by central excitatory amino acid mechanisms: evidence for specific involvement of R,S-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid-sensitive glutamate receptors. Parker SL; Crowley WR Endocrinology; 1993 Dec; 133(6):2847-54. PubMed ID: 7694846 [TBL] [Abstract][Full Text] [Related]
50. Characterization of excitatory amino acid modulation of dopamine release in the prefrontal cortex of conscious rats. Jedema HP; Moghddam B J Neurochem; 1996 Apr; 66(4):1448-53. PubMed ID: 8627297 [TBL] [Abstract][Full Text] [Related]
51. Changes of extracellular calcium concentration induced by application of excitatory amino acids in the human neocortex in vitro. Lücke A; Köhling R; Straub H; Moskopp D; Wassmann H; Speckmann EJ Brain Res; 1995 Feb; 671(2):222-6. PubMed ID: 7538028 [TBL] [Abstract][Full Text] [Related]
52. Glutamate receptor agonists modulate [Ca2+]i in isolated rat melanotropes. Giovannucci DR; Stuenkel EL Neuroendocrinology; 1995 Aug; 62(2):111-22. PubMed ID: 8584110 [TBL] [Abstract][Full Text] [Related]
53. Intracellular survival pathways against glutamate receptor agonist excitotoxicity in cultured neurons. Intracellular calcium responses. Marini AM; Ueda Y; June CH Ann N Y Acad Sci; 1999; 890():421-37. PubMed ID: 10668447 [TBL] [Abstract][Full Text] [Related]
54. Effects of repeated cold stress on aversive responses produced by intrathecal excitatory amino acids in rats. Okano K; Kuraishi Y; Satoh M Biol Pharm Bull; 1995 Nov; 18(11):1602-4. PubMed ID: 8593488 [TBL] [Abstract][Full Text] [Related]
55. Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. Spruston N; Jonas P; Sakmann B J Physiol; 1995 Jan; 482 ( Pt 2)(Pt 2):325-52. PubMed ID: 7536248 [TBL] [Abstract][Full Text] [Related]
56. Enflurane directly depresses glutamate AMPA and NMDA currents in mouse spinal cord motor neurons independent of actions on GABAA or glycine receptors. Cheng G; Kendig JJ Anesthesiology; 2000 Oct; 93(4):1075-84. PubMed ID: 11020764 [TBL] [Abstract][Full Text] [Related]
57. Activation of AMPA and kainate glutamate receptors impairs the viability of oligodendrocytes in vitro. Sanchez-Gomez MV; Matute C Int J Dev Biol; 1996; Suppl 1():187S-188S. PubMed ID: 9087754 [No Abstract] [Full Text] [Related]
58. Local infusion of the (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione does not block D1 dopamine receptor-mediated increases in immediate early gene expression in the dopamine-depleted striatum. Keefe KA; Gerfen CR Neuroscience; 1999 Mar; 89(2):491-504. PubMed ID: 10077330 [TBL] [Abstract][Full Text] [Related]
59. Functional characteristics of non-NMDA-type ionotropic glutamate receptor channels in AII amacrine cells in rat retina. Mørkve SH; Veruki ML; Hartveit E J Physiol; 2002 Jul; 542(Pt 1):147-65. PubMed ID: 12096058 [TBL] [Abstract][Full Text] [Related]