BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

645 related articles for article (PubMed ID: 10066163)

  • 1. Oxidative phosphorylation at the fin de siècle.
    Saraste M
    Science; 1999 Mar; 283(5407):1488-93. PubMed ID: 10066163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structures and proton-pumping strategies of mitochondrial respiratory enzymes.
    Schultz BE; Chan SI
    Annu Rev Biophys Biomol Struct; 2001; 30():23-65. PubMed ID: 11340051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mitochondrial electron transport and oxidative phosphorylation system.
    Hatefi Y
    Annu Rev Biochem; 1985; 54():1015-69. PubMed ID: 2862839
    [No Abstract]   [Full Text] [Related]  

  • 4. Postnatal development of the complexes of the electron transport chain in synaptic mitochondria from rat brain.
    Almeida A; Brooks KJ; Sammut I; Keelan J; Davey GP; Clark JB; Bates TE
    Dev Neurosci; 1995; 17(4):212-8. PubMed ID: 8575340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Native electrophoresis for isolation of mitochondrial oxidative phosphorylation protein complexes.
    Schägger H
    Methods Enzymol; 1995; 260():190-202. PubMed ID: 8592444
    [No Abstract]   [Full Text] [Related]  

  • 6. The nuclear ABC1 gene is essential for the correct conformation and functioning of the cytochrome bc1 complex and the neighbouring complexes II and IV in the mitochondrial respiratory chain.
    Brasseur G; Tron G; Dujardin G; Slonimski PP; Brivet-Chevillotte P
    Eur J Biochem; 1997 May; 246(1):103-11. PubMed ID: 9210471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of mitochondrial oxidative phosphorylation in patient muscle biopsies, lymphoblasts, and transmitochondrial cell lines.
    Trounce IA; Kim YL; Jun AS; Wallace DC
    Methods Enzymol; 1996; 264():484-509. PubMed ID: 8965721
    [No Abstract]   [Full Text] [Related]  

  • 8. Development of mitochondrial respiratory-chain complexes in neonatal rat brain.
    Almeida A; Bates TE; Clark JB
    Biochem Soc Trans; 1994 Nov; 22(4):409S. PubMed ID: 7698431
    [No Abstract]   [Full Text] [Related]  

  • 9. Thermal inactivation of electron-transport functions and F0F1-ATPase activities.
    Tomita M; Knox BE; Tsong TY
    Biochim Biophys Acta; 1987 Oct; 894(1):16-28. PubMed ID: 2889470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Similarities between mitochondrial and bacterial electron transport with particular reference to the action of inhibitors.
    Ferguson SJ
    Biochem Soc Trans; 1994 Feb; 22(1):181-3. PubMed ID: 8206221
    [No Abstract]   [Full Text] [Related]  

  • 11. Aerobic performance and oxygen free-radicals.
    Benzi G
    J Sports Med Phys Fitness; 1993 Sep; 33(3):205-22. PubMed ID: 8107472
    [No Abstract]   [Full Text] [Related]  

  • 12. Nitric oxide mediates brain mitochondrial maturation immediately after birth.
    Almeida A; Bolaños JP; Medina JM
    FEBS Lett; 1999 Jun; 452(3):290-4. PubMed ID: 10386608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic control of oxidative phosphorylation and experimental models of defects.
    Trounce I
    Hum Reprod; 2000 Jul; 15 Suppl 2():18-27. PubMed ID: 11041510
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assaying mitochondrial respiratory complex activity in mitochondria isolated from human cells and tissues.
    Birch-Machin MA; Turnbull DM
    Methods Cell Biol; 2001; 65():97-117. PubMed ID: 11381612
    [No Abstract]   [Full Text] [Related]  

  • 15. Mitochondrial complexes I, II, III, IV, and V in myocardial ischemia and autolysis.
    Rouslin W
    Am J Physiol; 1983 Jun; 244(6):H743-8. PubMed ID: 6305212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative analysis of some mechanisms affecting the yield of oxidative phosphorylation: dependence upon both fluxes and forces.
    Rigoulet M; Leverve X; Fontaine E; Ouhabi R; Guérin B
    Mol Cell Biochem; 1998 Jul; 184(1-2):35-52. PubMed ID: 9746311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variation in proton donor/acceptor pathways in succinate:quinone oxidoreductases.
    Cecchini G; Maklashina E; Yankovskaya V; Iverson TM; Iwata S
    FEBS Lett; 2003 Jun; 545(1):31-8. PubMed ID: 12788489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortical cytochrome oxidase activity is reduced in Alzheimer's disease.
    Mutisya EM; Bowling AC; Beal MF
    J Neurochem; 1994 Dec; 63(6):2179-84. PubMed ID: 7964738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper deprivation potentiates oxidative stress in HL-60 cell mitochondria.
    Johnson WT; Thomas AC
    Proc Soc Exp Biol Med; 1999 Jun; 221(2):147-52. PubMed ID: 10352126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct interaction between mitochondrial succinate-ubiquinone and ubiquinol-cytochrome c oxidoreductases probed by sensitivity to quinone-related inhibitors.
    Yamashita A; Miyoshi H; Hatano T; Iwamura H
    J Biochem; 1996 Aug; 120(2):377-84. PubMed ID: 8889824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.