These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 10066266)
1. BDNF is a target-derived survival factor for arterial baroreceptor and chemoafferent primary sensory neurons. Brady R; Zaidi SI; Mayer C; Katz DM J Neurosci; 1999 Mar; 19(6):2131-42. PubMed ID: 10066266 [TBL] [Abstract][Full Text] [Related]
2. Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor are required simultaneously for survival of dopaminergic primary sensory neurons in vivo. Erickson JT; Brosenitsch TA; Katz DM J Neurosci; 2001 Jan; 21(2):581-9. PubMed ID: 11160437 [TBL] [Abstract][Full Text] [Related]
3. Mice lacking brain-derived neurotrophic factor exhibit visceral sensory neuron losses distinct from mice lacking NT4 and display a severe developmental deficit in control of breathing. Erickson JT; Conover JC; Borday V; Champagnat J; Barbacid M; Yancopoulos G; Katz DM J Neurosci; 1996 Sep; 16(17):5361-71. PubMed ID: 8757249 [TBL] [Abstract][Full Text] [Related]
4. Cranial sensory neuron development in the absence of brain-derived neurotrophic factor in BDNF/Bax double null mice. Hellard D; Brosenitsch T; Fritzsch B; Katz DM Dev Biol; 2004 Nov; 275(1):34-43. PubMed ID: 15464571 [TBL] [Abstract][Full Text] [Related]
5. Brain-derived neurotrophic factor in arterial baroreceptor pathways: implications for activity-dependent plasticity at baroafferent synapses. Martin JL; Jenkins VK; Hsieh HY; Balkowiec A J Neurochem; 2009 Jan; 108(2):450-64. PubMed ID: 19054281 [TBL] [Abstract][Full Text] [Related]
6. BDNF supports mammalian chemoafferent neurons in vitro and following peripheral target removal in vivo. Hertzberg T; Fan G; Finley JC; Erickson JT; Katz DM Dev Biol; 1994 Dec; 166(2):801-11. PubMed ID: 7813797 [TBL] [Abstract][Full Text] [Related]
7. A laser confocal microscopic study of vagal afferent innervation of rat aortic arch: chemoreceptors as well as baroreceptors. Cheng Z; Powley TL; Schwaber JS; Doyle FJ J Auton Nerv Syst; 1997 Dec; 67(1-2):1-14. PubMed ID: 9470139 [TBL] [Abstract][Full Text] [Related]
8. Leukemia inhibitory factor and neurotrophins support overlapping populations of rat nodose sensory neurons in culture. Thaler CD; Suhr L; Ip N; Katz DM Dev Biol; 1994 Feb; 161(2):338-44. PubMed ID: 8313987 [TBL] [Abstract][Full Text] [Related]
9. Timing and regulation of trkB and BDNF mRNA expression in placode-derived sensory neurons and their targets. Robinson M; Adu J; Davies AM Eur J Neurosci; 1996 Nov; 8(11):2399-406. PubMed ID: 8950103 [TBL] [Abstract][Full Text] [Related]
10. TrkB expression and early sensory neuron survival are independent of endogenous BDNF. Huber K; Kuehnel F; Wyatt S; Davies AM J Neurosci Res; 2000 Feb; 59(3):372-8. PubMed ID: 10679773 [TBL] [Abstract][Full Text] [Related]
11. Neurotrophins in the ear: their roles in sensory neuron survival and fiber guidance. Fritzsch B; Tessarollo L; Coppola E; Reichardt LF Prog Brain Res; 2004; 146():265-78. PubMed ID: 14699969 [TBL] [Abstract][Full Text] [Related]
12. Epithelial overexpression of BDNF or NT4 disrupts targeting of taste neurons that innervate the anterior tongue. Krimm RF; Miller KK; Kitzman PH; Davis BM; Albers KM Dev Biol; 2001 Apr; 232(2):508-21. PubMed ID: 11401409 [TBL] [Abstract][Full Text] [Related]
13. Nitric oxide regulates BDNF release from nodose ganglion neurons in a pattern-dependent and cGMP-independent manner. Hsieh HY; Robertson CL; Vermehren-Schmaedick A; Balkowiec A J Neurosci Res; 2010 May; 88(6):1285-97. PubMed ID: 19937808 [TBL] [Abstract][Full Text] [Related]
14. Cellular mechanisms of activity-dependent BDNF expression in primary sensory neurons. Vermehren-Schmaedick A; Khanjian RA; Balkowiec A Neuroscience; 2015 Dec; 310():665-73. PubMed ID: 26459016 [TBL] [Abstract][Full Text] [Related]
15. Reduced intestinal brain-derived neurotrophic factor increases vagal sensory innervation of the intestine and enhances satiation. Biddinger JE; Fox EA J Neurosci; 2014 Jul; 34(31):10379-93. PubMed ID: 25080597 [TBL] [Abstract][Full Text] [Related]
16. Lingual and palatal gustatory afferents each depend on both BDNF and NT-4, but the dependence is greater for lingual than palatal afferents. Patel AV; Huang T; Krimm RF J Comp Neurol; 2010 Aug; 518(16):3290-301. PubMed ID: 20575060 [TBL] [Abstract][Full Text] [Related]
17. Differential effects of endogenous brain-derived neurotrophic factor on the survival of axotomized sensory neurons in dorsal root ganglia: a possible role for the p75 neurotrophin receptor. Zhou XF; Li WP; Zhou FH; Zhong JH; Mi JX; Wu LL; Xian CJ Neuroscience; 2005; 132(3):591-603. PubMed ID: 15837121 [TBL] [Abstract][Full Text] [Related]
18. The survival-promoting effect of glial cell line-derived neurotrophic factor on axotomized corticospinal neurons in vivo is mediated by an endogenous brain-derived neurotrophic factor mechanism. Giehl KM; Schütte A; Mestres P; Yan Q J Neurosci; 1998 Sep; 18(18):7351-60. PubMed ID: 9736655 [TBL] [Abstract][Full Text] [Related]
19. Chemoafferent degeneration and carotid body hypoplasia following chronic hyperoxia in newborn rats. Erickson JT; Mayer C; Jawa A; Ling L; Olson EB; Vidruk EH; Mitchell GS; Katz DM J Physiol; 1998 Jun; 509 ( Pt 2)(Pt 2):519-26. PubMed ID: 9575300 [TBL] [Abstract][Full Text] [Related]
20. Brain-derived neurotrophic factor-immunoreactive neurons in the rat vagal and glossopharyngeal sensory ganglia; co-expression with other neurochemical substances. Ichikawa H; Terayama R; Yamaai T; Yan Z; Sugimoto T Brain Res; 2007 Jun; 1155():93-9. PubMed ID: 17512913 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]