BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 10066343)

  • 1. IFN-gamma-dependent nitric oxide production is not linked to resistance in experimental African trypanosomiasis.
    Hertz CJ; Mansfield JM
    Cell Immunol; 1999 Feb; 192(1):24-32. PubMed ID: 10066343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trypanosoma cruzi: IL-10, TNF, IFN-gamma, and IL-12 regulate innate and acquired immunity to infection.
    Abrahamsohn IA; Coffman RL
    Exp Parasitol; 1996 Nov; 84(2):231-44. PubMed ID: 8932773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetics of resistance to the African trypanosomes. VI. Heredity of resistance and variable surface glycoprotein-specific immune responses.
    De Gee AL; Levine RF; Mansfield JM
    J Immunol; 1988 Jan; 140(1):283-8. PubMed ID: 3121739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetics of resistance to the African trypanosomes. V. Qualitative and quantitative differences in interferon production among susceptible and resistant mouse strains.
    de Gee AL; Sonnenfeld G; Mansfield JM
    J Immunol; 1985 Apr; 134(4):2723-6. PubMed ID: 2579155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of T helper cell responses to the trypanosome variant surface glycoprotein.
    Schleifer KW; Filutowicz H; Schopf LR; Mansfield JM
    J Immunol; 1993 Apr; 150(7):2910-9. PubMed ID: 8454863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide-mediated suppression of T cell responses during Trypanosoma brucei infection: soluble trypanosome products and interferon-gamma are synergistic inducers of nitric oxide synthase.
    Sternberg MJ; Mabbott NA
    Eur J Immunol; 1996 Mar; 26(3):539-43. PubMed ID: 8605918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppressor macrophages in African trypanosomiasis inhibit T cell proliferative responses by nitric oxide and prostaglandins.
    Schleifer KW; Mansfield JM
    J Immunol; 1993 Nov; 151(10):5492-503. PubMed ID: 8228241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetics of resistance to the African trypanosomes. III. Variant-specific antibody responses of H-2-compatible resistant and susceptible mice.
    Levine RF; Mansfield JM
    J Immunol; 1984 Sep; 133(3):1564-9. PubMed ID: 6747297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of parasitemia and survival during Trypanosoma brucei brucei infection is related to strain-dependent ability to produce IL-4.
    Bakhiet M; Jansson L; Büscher P; Holmdahl R; Kristensson K; Olsson T
    J Immunol; 1996 Oct; 157(8):3518-26. PubMed ID: 8871651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The inheritance of factors controlling resistance in mice infected with Trypanosoma brucei rhodesiense.
    Seed JR; Sechelski J
    J Parasitol; 1995 Aug; 81(4):653-7. PubMed ID: 7623216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissection of strain difference in acquired protective immunity against Mycobacterium bovis Calmette-Guérin bacillus (BCG). Macrophages regulate the susceptibility through cytokine network and the induction of nitric oxide synthase.
    Yoshida A; Koide Y; Uchijima M; Yoshida TO
    J Immunol; 1995 Aug; 155(4):2057-66. PubMed ID: 7543537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Defense mechanisms in trypanosomiasis].
    Daulouede PS; Okomo-Assoumou MC; Labassa M; Fouquet C; Vincendeau P
    Bull Soc Pathol Exot; 1994; 87(5):330-2. PubMed ID: 7496195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Independent regulation of B cell responses to surface and subsurface epitopes of African trypanosome variable surface glycoproteins.
    Reinitz DM; Mansfield JM
    J Immunol; 1988 Jul; 141(2):620-6. PubMed ID: 2454998
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide expression in the spleen, but not in the liver, correlates with resistance to blood-stage malaria in mice.
    Jacobs P; Radzioch D; Stevenson MM
    J Immunol; 1995 Dec; 155(11):5306-13. PubMed ID: 7594544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antibody responses in resistant and susceptible inbred mice infected with Trypanosoma congolense.
    Mitchell LA; Pearson TW
    Immunology; 1986 Feb; 57(2):297-303. PubMed ID: 3949371
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of self-cure from Trypanosoma congolense infection in mice.
    Pinder M; Chassin P; Fumoux F
    J Immunol; 1986 Feb; 136(4):1427-34. PubMed ID: 3484768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neutralization of IL-10 up-regulates nitric oxide production and protects susceptible mice from challenge with Candida albicans.
    Romani L; Puccetti P; Mencacci A; Cenci E; Spaccapelo R; Tonnetti L; Grohmann U; Bistoni F
    J Immunol; 1994 Apr; 152(7):3514-21. PubMed ID: 7908304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mice varying in resistance to African trypanosomiasis respond differently to treatments with variant surface glycoprotein.
    Diffley P
    Eur J Immunol; 1985 Apr; 15(4):321-4. PubMed ID: 3872799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetics of resistance to the African trypanosomes. VII. Trypanosome virulence is not linked to variable surface glycoprotein expression.
    Inverso JA; De Gee AL; Mansfield JM
    J Immunol; 1988 Jan; 140(1):289-93. PubMed ID: 3335780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of interferons during experimental African trypanosomiasis.
    Bancroft GJ; Sutton CJ; Morris AG; Askonas BA
    Clin Exp Immunol; 1983 Apr; 52(1):135-43. PubMed ID: 6190591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.