These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 10066526)

  • 1. Bacterial genomics and adaptation to life on plants: implications for the evolution of pathogenicity and symbiosis.
    Preston GM; Haubold B; Rainey PB
    Curr Opin Microbiol; 1998 Oct; 1(5):589-97. PubMed ID: 10066526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-enabled perspectives on the composition, evolution, and expression of virulence determinants in bacterial plant pathogens.
    Lindeberg M
    Annu Rev Phytopathol; 2012; 50():111-32. PubMed ID: 22559066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative genomics of 151 plant-associated bacteria reveal putative mechanisms underlying specific interactions between bacteria and plant hosts.
    Cai H; Bai Y; Guo C
    Genes Genomics; 2018 Aug; 40(8):857-864. PubMed ID: 30047115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arthropod-Spiroplasma relationship in the genomic era.
    Bolaños LM; Servín-Garcidueñas LE; Martínez-Romero E
    FEMS Microbiol Ecol; 2015 Feb; 91(2):1-8. PubMed ID: 25764543
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial genomes: evolution of pathogenicity.
    Arnold DL; Jackson RW
    Curr Opin Plant Biol; 2011 Aug; 14(4):385-91. PubMed ID: 21444240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genomes within genomes: nested symbiosis and its implications for plant evolution.
    Batstone RT
    New Phytol; 2022 Apr; 234(1):28-34. PubMed ID: 34761378
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pathogenomics of the Ralstonia solanacearum species complex.
    Genin S; Denny TP
    Annu Rev Phytopathol; 2012; 50():67-89. PubMed ID: 22559068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis.
    Ochman H; Moran NA
    Science; 2001 May; 292(5519):1096-9. PubMed ID: 11352062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What can bacterial genome research teach us about bacteria-plant interactions?
    Pühler A; Arlat M; Becker A; Göttfert M; Morrissey JP; O'Gara F
    Curr Opin Plant Biol; 2004 Apr; 7(2):137-47. PubMed ID: 15003213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of prophage in plant-pathogenic bacteria.
    Varani AM; Monteiro-Vitorello CB; Nakaya HI; Van Sluys MA
    Annu Rev Phytopathol; 2013; 51():429-51. PubMed ID: 23725471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defensive Symbiosis and the Evolution of Virulence.
    Nelson P; May G
    Am Nat; 2020 Sep; 196(3):333-343. PubMed ID: 32813997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New paradigms for the evolution of beneficial infections.
    Sachs JL; Essenberg CJ; Turcotte MM
    Trends Ecol Evol; 2011 Apr; 26(4):202-9. PubMed ID: 21371775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary Transition from Pathogenicity to Commensalism: Global Regulator Mutations Mediate Fitness Gains through Virulence Attenuation.
    Jansen G; Crummenerl LL; Gilbert F; Mohr T; Pfefferkorn R; Thänert R; Rosenstiel P; Schulenburg H
    Mol Biol Evol; 2015 Nov; 32(11):2883-96. PubMed ID: 26199376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomes of obligate plant pathogens reveal adaptations for obligate parasitism.
    McDowell JM
    Proc Natl Acad Sci U S A; 2011 May; 108(22):8921-2. PubMed ID: 21576481
    [No Abstract]   [Full Text] [Related]  

  • 15. Genomic features of bacterial adaptation to plants.
    Levy A; Salas Gonzalez I; Mittelviefhaus M; Clingenpeel S; Herrera Paredes S; Miao J; Wang K; Devescovi G; Stillman K; Monteiro F; Rangel Alvarez B; Lundberg DS; Lu TY; Lebeis S; Jin Z; McDonald M; Klein AP; Feltcher ME; Rio TG; Grant SR; Doty SL; Ley RE; Zhao B; Venturi V; Pelletier DA; Vorholt JA; Tringe SG; Woyke T; Dangl JL
    Nat Genet; 2017 Dec; 50(1):138-150. PubMed ID: 29255260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytopathogen Genome Announcement: Draft Genome Sequences of 62 Pseudomonas syringae Type and Pathotype Strains.
    Thakur S; Weir BS; Guttman DS
    Mol Plant Microbe Interact; 2016 Apr; 29(4):243-6. PubMed ID: 26883489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Genome Analyses Reveal the Genomic Traits and Host Plant Adaptations of
    Wan X
    Int J Mol Sci; 2019 Oct; 20(19):. PubMed ID: 31623351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of plant pathogenesis in Pseudomonas syringae: a genomics perspective.
    O'Brien HE; Thakur S; Guttman DS
    Annu Rev Phytopathol; 2011; 49():269-89. PubMed ID: 21568703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. What does it take to be a plant pathogen: genomic insights from Streptomyces species.
    Bignell DR; Huguet-Tapia JC; Joshi MV; Pettis GS; Loria R
    Antonie Van Leeuwenhoek; 2010 Aug; 98(2):179-94. PubMed ID: 20396949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The genomics of symbiosis: hosts keep the baby and the bath water.
    Palenik B
    Proc Natl Acad Sci U S A; 2002 Sep; 99(19):11996-7. PubMed ID: 12221298
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.