These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 10066713)

  • 1. Acinar flow irreversibility caused by perturbations in reversible alveolar wall motion.
    Tsuda A; Otani Y; Butler JP
    J Appl Physiol (1985); 1999 Mar; 86(3):977-84. PubMed ID: 10066713
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of convective stretching and folding on aerosol mixing deep in the lung, assessed by approximate entropy.
    Butler JP; Tsuda A
    J Appl Physiol (1985); 1997 Sep; 83(3):800-9. PubMed ID: 9292466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Logistic trajectory maps and aerosol mixing due to asynchronous flow at airway bifurcations.
    Butler JP; Tsuda A
    Respir Physiol Neurobiol; 2005 Aug; 148(1-2):195-206. PubMed ID: 16002347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinematically irreversible acinar flow: a departure from classical dispersive aerosol transport theories.
    Henry FS; Butler JP; Tsuda A
    J Appl Physiol (1985); 2002 Feb; 92(2):835-45. PubMed ID: 11796699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Geometric hysteresis of alveolated ductal architecture.
    Kojic M; Butler JP; Vlastelica I; Stojanovic B; Rankovic V; Tsuda A
    J Biomech Eng; 2011 Nov; 133(11):111005. PubMed ID: 22168737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow and particle dispersion in a pulmonary alveolus--part I: velocity measurements and convective particle transport.
    Chhabra S; Prasad AK
    J Biomech Eng; 2010 May; 132(5):051009. PubMed ID: 20459210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Respiratory flow phenomena and gravitational deposition in a three-dimensional space-filling model of the pulmonary acinar tree.
    Sznitman J; Heimsch T; Wildhaber JH; Tsuda A; Rösgen T
    J Biomech Eng; 2009 Mar; 131(3):031010. PubMed ID: 19154069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional convective alveolar flow induced by rhythmic breathing motion of the pulmonary acinus.
    Sznitman J; Heimsch F; Heimsch T; Rusch D; Rösgen T
    J Biomech Eng; 2007 Oct; 129(5):658-65. PubMed ID: 17887891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aerosols in the study of convective acinar mixing.
    Darquenne C; Prisk GK
    Respir Physiol Neurobiol; 2005 Aug; 148(1-2):207-16. PubMed ID: 15890563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revisiting pulmonary acinar particle transport: convection, sedimentation, diffusion, and their interplay.
    Hofemeier P; Sznitman J
    J Appl Physiol (1985); 2015 Jun; 118(11):1375-85. PubMed ID: 25882387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gravitational deposition in a rhythmically expanding and contracting alveolus.
    Haber S; Yitzhak D; Tsuda A
    J Appl Physiol (1985); 2003 Aug; 95(2):657-71. PubMed ID: 12639848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chaotic mixing deep in the lung.
    Tsuda A; Rogers RA; Hydon PE; Butler JP
    Proc Natl Acad Sci U S A; 2002 Jul; 99(15):10173-8. PubMed ID: 12119385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Respiratory microflows in the pulmonary acinus.
    Sznitman J
    J Biomech; 2013 Jan; 46(2):284-98. PubMed ID: 23178038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two- and three-dimensional simulations of aerosol transport and deposition in alveolar zone of human lung.
    Darquenne C; Paiva M
    J Appl Physiol (1985); 1996 Apr; 80(4):1401-14. PubMed ID: 8926273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acinus-on-a-chip: a microfluidic platform for pulmonary acinar flows.
    Fishler R; Mulligan MK; Sznitman J
    J Biomech; 2013 Nov; 46(16):2817-23. PubMed ID: 24090494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of alveolar topology on acinar flows and convective mixing.
    Hofemeier P; Sznitman J
    J Biomech Eng; 2014 Jun; 136(6):061007. PubMed ID: 24686842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of alveolated duct structure on aerosol kinetics. I. Diffusional deposition in the absence of gravity.
    Tsuda A; Butler JP; Fredberg JJ
    J Appl Physiol (1985); 1994 Jun; 76(6):2497-509. PubMed ID: 7928876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aerosol dispersion in human lung: comparison between numerical simulations and experiments for bolus tests.
    Darquenne C; Brand P; Heyder J; Paiva M
    J Appl Physiol (1985); 1997 Sep; 83(3):966-74. PubMed ID: 9292486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aerosol transport and deposition in the rhythmically expanding pulmonary acinus.
    Tsuda A; Henry FS; Otani Y; Haber S; Butler JP
    J Aerosol Med; 1996; 9(3):389-408. PubMed ID: 10163663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of particle deposition in the lungs based on simple modeling of alveolar mixing.
    Georgakakou S; Gourgoulianis K; Daniil Z; Bontozoglou V
    Respir Physiol Neurobiol; 2016 May; 225():8-18. PubMed ID: 26790361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.