These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 10066818)

  • 1. L-type Ca2+ channels and K+ channels specifically modulate the frequency and amplitude of spontaneous Ca2+ oscillations and have distinct roles in prolactin release in GH3 cells.
    Charles AC; Piros ET; Evans CJ; Hales TG
    J Biol Chem; 1999 Mar; 274(11):7508-15. PubMed ID: 10066818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacological blockade of ERG K(+) channels and Ca(2+) influx through store-operated channels exerts opposite effects on intracellular Ca(2+) oscillations in pituitary GH(3) cells.
    Secondo A; Taglialatela M; Cataldi M; Giorgio G; Valore M; Di Renzo G; Annunziato L
    Mol Pharmacol; 2000 Nov; 58(5):1115-28. PubMed ID: 11040061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phoneutria nigriventer toxin Tx3-1 blocks A-type K+ currents controlling Ca2+ oscillation frequency in GH3 cells.
    Kushmerick C; Kalapothakis E; Beirão PS; Penaforte CL; Prado VF; Cruz JS; Diniz CR; Cordeiro MN; Gomez MV; Romano-Silva MA; Prado MA
    J Neurochem; 1999 Apr; 72(4):1472-81. PubMed ID: 10098851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional coupling of voltage-dependent L-type Ca2+ current to Ca2+-activated K+ current in pituitary GH3 cells.
    Wu SN; Lo YK; Li HF; Shen AY
    Chin J Physiol; 2001 Dec; 44(4):161-7. PubMed ID: 11908545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloned delta-opioid receptors in GH(3) cells inhibit spontaneous Ca(2+) oscillations and prolactin release through K(IR) channel activation.
    Piros ET; Charles RC; Song L; Evans CJ; Hales TG
    J Neurophysiol; 2000 May; 83(5):2691-8. PubMed ID: 10805669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of K+ and Ca2+ channels by histamine H1-receptor stimulation in rabbit coronary artery cells.
    Ishikawa T; Hume JR; Keef KD
    J Physiol; 1993 Aug; 468():379-400. PubMed ID: 7504729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Riluzole inhibits spontaneous Ca2+ signaling in neuroendocrine cells by activation of K+ channels and inhibition of Na+ channels.
    Beltran-Parrazal L; Charles A
    Br J Pharmacol; 2003 Nov; 140(5):881-8. PubMed ID: 14530220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Ca(2+)-ATPase in spontaneous oscillations of cytosolic free Ca2+ in GH3 rat pituitary cells.
    Hirono M; Takamura K; Ito Y; Nakano Y; Chikaoka Y; Suzuki N; Yoshioka T
    Cell Calcium; 1999 Feb; 25(2):125-35. PubMed ID: 10326679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calcium-activated potassium channels in native endothelial cells from rabbit aorta: conductance, Ca2+ sensitivity and block.
    Rusko J; Tanzi F; van Breemen C; Adams DJ
    J Physiol; 1992 Sep; 455():601-21. PubMed ID: 1484364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estradiol-modified prolactin secretion independently of action potentials and Ca
    Sánchez M; Suárez L; Cantabrana B; Bordallo J
    Naunyn Schmiedebergs Arch Pharmacol; 2017 Jan; 390(1):95-104. PubMed ID: 27747371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potassium currents in hair cells isolated from the cochlea of the chick.
    Fuchs PA; Evans MG
    J Physiol; 1990 Oct; 429():529-51. PubMed ID: 2277357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitric oxide induces [Ca2+]i oscillations in pituitary GH3 cells: involvement of IDR and ERG K+ currents.
    Secondo A; Pannaccione A; Cataldi M; Sirabella R; Formisano L; Di Renzo G; Annunziato L
    Am J Physiol Cell Physiol; 2006 Jan; 290(1):C233-43. PubMed ID: 16207796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The activation of calcium and calcium-activated potassium channels in mammalian colonic smooth muscle by substance P.
    Mayer EA; Loo DD; Snape WJ; Sachs G
    J Physiol; 1990 Jan; 420():47-71. PubMed ID: 1691293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional characterization of ion permeation pathway in the N-type Ca2+ channel.
    Wakamori M; Strobeck M; Niidome T; Teramoto T; Imoto K; Mori Y
    J Neurophysiol; 1998 Feb; 79(2):622-34. PubMed ID: 9463426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage-gated currents of tilapia prolactin cells.
    Xu SH; Cooke IM
    Gen Comp Endocrinol; 2007 Jan; 150(2):219-32. PubMed ID: 17045992
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of L-type calcium-channel activity by thapsigargin and 2,5-t-butylhydroquinone, but not by cyclopiazonic acid.
    Nelson EJ; Li CC; Bangalore R; Benson T; Kass RS; Hinkle PM
    Biochem J; 1994 Aug; 302 ( Pt 1)(Pt 1):147-54. PubMed ID: 7520693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of the kinetics of inositol 1,4,5-trisphosphate-induced [Ca2+]i oscillations by calcium entry in pituitary gonadotrophs.
    Kukuljan M; Vergara L; Stojilkovic SS
    Biophys J; 1997 Feb; 72(2 Pt 1):698-707. PubMed ID: 9017197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of Ca2+-activated K+ current by clotrimazole in rat anterior pituitary GH3 cells.
    Wu SN; Li HF; Jan CR; Shen AY
    Neuropharmacology; 1999 Jul; 38(7):979-89. PubMed ID: 10428416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Variations in the ensemble of potassium currents underlying resonance in turtle hair cells.
    Goodman MB; Art JJ
    J Physiol; 1996 Dec; 497 ( Pt 2)(Pt 2):395-412. PubMed ID: 8961183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. L-type calcium channel activity regulates sodium channel levels in rat pituitary GH3 cells.
    Monjaraz E; Navarrete A; Lopez-Santiago LF; Vega AV; Arias-Montaño JA; Cota G
    J Physiol; 2000 Feb; 523 Pt 1(Pt 1):45-55. PubMed ID: 10673544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.