These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 100669)

  • 21. Synthesis of biotin-vitamers from pimelic acid and coenzyme A by cell-free extracts of various bacteria.
    Izumi Y; Morita H; Sato K; Tani Y; Ogata K
    Biochim Biophys Acta; 1972 Mar; 264(1):210-3. PubMed ID: 4623286
    [No Abstract]   [Full Text] [Related]  

  • 22. [Asparaginase and glutaminase activity in Pseudomonas fluorescens in continuous cultivation].
    Eremenko VV; Zhukov AV; Nikolaev AIa
    Mikrobiologiia; 1975; 44(4):615-20. PubMed ID: 809640
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Biomass composition of thermotolerant yeasts of the genus Candida under elevated cultivation temperatures].
    Chistiakova TI; Dediukhina EG; Eroshin VK
    Mikrobiologiia; 1981; 50(2):222-8. PubMed ID: 7242390
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Intracellular pool of free amino acids in a wild strain of Corynebacterium glutamicum and its lysine-producing mutants].
    Kara-Murza SN; Timokhina EA; Zhdanova NI
    Prikl Biokhim Mikrobiol; 1981; 17(6):813-20. PubMed ID: 6798561
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Utilization by Escherichia coli and Pseudomonas fluorescens of a siderophore from Pseudomonas fluorescens strain PAB].
    Pajáro MC; Albesa I
    Rev Argent Microbiol; 1992; 24(2):60-6. PubMed ID: 1298014
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Characteristics of spore-forming bacteria of the genus Bacillus that break down caprolactam].
    Rotmistrov MN; Roĭ AA; Gvozdiak PI
    Mikrobiologiia; 1975; 44(4):727-31. PubMed ID: 809644
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Metabolic products of hydrocarbon-oxidizing strains of Mycococcus lactis and Pseudomonas fluorescens and their influence on culture growth].
    Spitsyna DN; Gradova NB; Davidova EG
    Mikrobiologiia; 1977; 46(6):997-1002. PubMed ID: 414057
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Ability of Pseudomonas to decompose cholesterol].
    Kozlova VKh; Fonina NA
    Mikrobiologiia; 1972; 41(4):602-6. PubMed ID: 4628510
    [No Abstract]   [Full Text] [Related]  

  • 29. [Properties of the phenotypic variants of Pseudomonas aurantiaca and P. fluorescens].
    Muliukin AL; Kozlova AN; El'-Registan GI
    Mikrobiologiia; 2008; 77(6):766-76. PubMed ID: 19137715
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Transformation of 2,4,6-trinitrotoluene during oxygen and nitrate respiration in Pseudomonas fluorescens].
    Naumova RP; Selivanovskaia SIu; Cherepneva IE
    Prikl Biokhim Mikrobiol; 1988; 24(4):493-8. PubMed ID: 3141916
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Free amino acids of the nodule bacteria of clover in pure culture and under symbiotic conditions].
    Rangelova VN; Voĭtenko LN
    Mikrobiol Zh (1978); 1979; 41(6):613-9. PubMed ID: 514101
    [No Abstract]   [Full Text] [Related]  

  • 32. [Effects of the nitrogen nutrition conditions on the growth and protein synthesis of carboxydobacteria].
    Volova-Kesler TG; Barashkov VA; Trubachev IN; Stasishina GN
    Mikrobiologiia; 1979; 48(1):70-5. PubMed ID: 423812
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spectroscopic characterization and identification of Pseudomonas fluorescens mediated metabolic products of Acid Yellow-9.
    Pandey BV; Upadhyay RS
    Microbiol Res; 2006; 161(4):311-5. PubMed ID: 16412621
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Utilization of acidic amino acids and their amides by pseudomonads: role of periplasmic glutaminase-asparaginase.
    Sonawane A; Klöppner U; Derst C; Röhm KH
    Arch Microbiol; 2003 Mar; 179(3):151-9. PubMed ID: 12610720
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Regulation of the expression of plasmid determination responsible for caprolactam degradation by bacteria of the genus Pseudomonas].
    Esikova TZ; Grishchenkov VG
    Mikrobiologiia; 1992; 61(5):843-51. PubMed ID: 1287407
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of the caprolactam degradation pathway in Pseudomonas jessenii using mass spectrometry-based proteomics.
    Otzen M; Palacio C; Janssen DB
    Appl Microbiol Biotechnol; 2018 Aug; 102(15):6699-6711. PubMed ID: 29850960
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of an Acyl-CoA Ligase from Streptomyces aizunensis for Lactam Biosynthesis.
    Zhang J; Barajas JF; Burdu M; Wang G; Baidoo EE; Keasling JD
    ACS Synth Biol; 2017 May; 6(5):884-890. PubMed ID: 28414905
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Amino acid incorporation in the subcellular structures of Pseudomonas fluorescens A3-12. II. Ribonucleoprotein particles derived from the insoluble structures of bacteria and the incorporation of S35-methionine into "broken protoplast".
    NOZU K
    Jpn J Microbiol; 1959 Jul; 3():255-66. PubMed ID: 14427871
    [No Abstract]   [Full Text] [Related]  

  • 39. [Change in the biochemical properties of bacteria as a result of adaptation to plants].
    Petrenko MB
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1973; 114(6):101-6. PubMed ID: 4358198
    [No Abstract]   [Full Text] [Related]  

  • 40. [Formation of gallic acid from quinic acid by Enterobacter cloacae and Pseudomonas fluorescens].
    Korth H
    Arch Mikrobiol; 1973; 89(1):67-72. PubMed ID: 4632608
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.