BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 10066938)

  • 1. Mechanisms of hypoxic vasodilatation of isolated rat mesenteric arteries: a comparison with metabolic inhibition.
    Otter D; Austin C
    J Physiol; 1999 Apr; 516 ( Pt 1)(Pt 1):249-59. PubMed ID: 10066938
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of chronic inhibition of nitric oxide synthesis on contractile and relaxant properties of rat carotid and mesenteric arteries.
    Heijenbrok FJ; Mathy MJ; Pfaffendorf M; van Zwieten PA
    Naunyn Schmiedebergs Arch Pharmacol; 2000 Dec; 362(6):504-11. PubMed ID: 11138842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of lactate-induced relaxation of isolated rat mesenteric resistance arteries.
    McKinnon W; Aaronson PI; Knock G; Graves J; Poston L
    J Physiol; 1996 Feb; 490 ( Pt 3)(Pt 3):783-92. PubMed ID: 8683476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contractile responses of isolated rat mesenteric arteries to acute episodes of severe hypoxia and subsequent reoxygenation.
    Bruce J; Taggart M; Austin C
    Microvasc Res; 2004 Nov; 68(3):303-12. PubMed ID: 15501250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of 17beta-oestradiol on rat isolated coronary and mesenteric artery tone: involvement of nitric oxide.
    Otter D; Austin C
    J Pharm Pharmacol; 1998 May; 50(5):531-8. PubMed ID: 9643447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impaired vasoconstriction and nitric oxide-mediated relaxation in pulmonary arteries of hypoxia- and monocrotaline-induced pulmonary hypertensive rats.
    Mam V; Tanbe AF; Vitali SH; Arons E; Christou HA; Khalil RA
    J Pharmacol Exp Ther; 2010 Feb; 332(2):455-62. PubMed ID: 19915069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regional differences in endothelium-dependent relaxation in the rat: contribution of nitric oxide and nitric oxide-independent mechanisms.
    Zygmunt PM; Ryman T; Högestätt ED
    Acta Physiol Scand; 1995 Nov; 155(3):257-66. PubMed ID: 8619323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different involvement of nitric oxide in endothelium-dependent relaxation of porcine pulmonary artery and vein: influence of hypoxia.
    Félétou M; Girard V; Canet E
    J Cardiovasc Pharmacol; 1995 Apr; 25(4):665-73. PubMed ID: 7596137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relaxant effects of carbon monoxide compared with nitric oxide in pulmonary and systemic vessels of newborn piglets.
    Villamor E; Pérez-Vizcaíno F; Cogolludo AL; Conde-Oviedo J; Zaragozá-Arnáez F; López-López JG; Tamargo J
    Pediatr Res; 2000 Oct; 48(4):546-53. PubMed ID: 11004249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dexmedetomidine induces both relaxations and contractions, via different {alpha}2-adrenoceptor subtypes, in the isolated mesenteric artery and aorta of the rat.
    Wong ES; Man RY; Vanhoutte PM; Ng KF
    J Pharmacol Exp Ther; 2010 Dec; 335(3):659-64. PubMed ID: 20837990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous monitoring of vascular contractility, intracellular pH and intracellular calcium in isolated rat mesenteric arteries; effects of weak bases.
    Otter D; Austin C
    Exp Physiol; 2000 May; 85(3):349-51. PubMed ID: 10825423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chronic hypoxia inhibits contraction of fetal arteries by increased endothelium-derived nitric oxide and prostaglandin synthesis.
    Thompson LP; Aguan K; Zhou H
    J Soc Gynecol Investig; 2004 Dec; 11(8):511-20. PubMed ID: 15582495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of applied tension and nitric oxide on responses to endothelins in rat pulmonary resistance arteries: effect of chronic hypoxia.
    MacLean MR; McCulloch KM
    Br J Pharmacol; 1998 Mar; 123(5):991-9. PubMed ID: 9535030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variable potency of nitrergic-nitrovasodilator relaxations of the mouse anococcygeus against different forms of induced tone.
    Gibson A; McFadzean I; Tucker JF; Wayman C
    Br J Pharmacol; 1994 Dec; 113(4):1494-500. PubMed ID: 7889307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of hypoxia on force, intracellular pH and Ca2+ concentration in rat cerebral and mesenteric small arteries.
    Aalkjaer C; Lombard JH
    J Physiol; 1995 Jan; 482 ( Pt 2)(Pt 2):409-19. PubMed ID: 7714832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alteration of flow-induced dilatation in mesenteric resistance arteries of L-NAME treated rats and its partial association with induction of cyclo-oxygenase-2.
    Henrion D; Dechaux E; Dowell FJ; Maclour J; Samuel JL; Lévy BI; Michel JB
    Br J Pharmacol; 1997 May; 121(1):83-90. PubMed ID: 9146891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relative importance of nitric oxide and nitric oxide-independent mechanisms in acetylcholine-evoked dilatation of the rat mesenteric bed.
    Parsons SJ; Hill A; Waldron GJ; Plane F; Garland CJ
    Br J Pharmacol; 1994 Dec; 113(4):1275-80. PubMed ID: 7534183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stress susceptibility as a determinant of endothelium-dependent vascular reactivity in rat mesenteric arteries.
    Riksen NP; Ellenbroek B; Cools AR; Siero H; Rongen GA; Smits BW; Russel FG; Smits P
    J Cardiovasc Pharmacol; 2003 Apr; 41(4):625-31. PubMed ID: 12658065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thromboxane receptor stimulation associated with loss of SKCa activity and reduced EDHF responses in the rat isolated mesenteric artery.
    Crane GJ; Garland CJ
    Br J Pharmacol; 2004 May; 142(1):43-50. PubMed ID: 15051624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversal of bradykinin-induced relaxation to contraction after interferon-gamma in bovine isolated mesenteric arteries.
    De Kimpe SJ; Tielemans W; Van Heuven-Nolsen D; Nijkamp FP
    Eur J Pharmacol; 1994 Aug; 261(1-2):111-20. PubMed ID: 8001633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.