BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 10068140)

  • 21. Computer simulation of the variable agarose fiber dimensions on the basis of mobility data derived from gel electrophoresis and using the Ogston theory.
    Tietz D; Chrambach A
    Anal Biochem; 1987 Mar; 161(2):395-411. PubMed ID: 3578803
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Presence and formation of 'free apolipoprotein A-I-like' particles in human plasma.
    Asztalos BF; Roheim PS
    Arterioscler Thromb Vasc Biol; 1995 Sep; 15(9):1419-23. PubMed ID: 7670957
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Purification of bacteriophages and SDS-PAGE analysis of phage structural proteins from ghost particles.
    Boulanger P
    Methods Mol Biol; 2009; 502():227-38. PubMed ID: 19082559
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Separating large microscale particles by exploiting charge differences with dielectrophoresis.
    Polniak DV; Goodrich E; Hill N; Lapizco-Encinas BH
    J Chromatogr A; 2018 Apr; 1545():84-92. PubMed ID: 29510869
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computer-assisted 2-D agarose electrophoresis of Haemophilus influenzae type B meningitis vaccines and analysis of polydisperse particle populations in the size range of viruses: a review.
    Tietz D
    Electrophoresis; 2007 Feb; 28(4):512-24. PubMed ID: 17304485
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pulsed field separation of large supercoiled and open-circular DNAs and its application to bacterial artificial chromosome cloning.
    Wang M; Lai E
    Electrophoresis; 1995 Jan; 16(1):1-7. PubMed ID: 7737080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Separation of small DNA fragments by conventional gel electrophoresis.
    Chory J; Pollard JD
    Curr Protoc Mol Biol; 2001 May; Chapter 2():Unit2.7. PubMed ID: 18265187
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-resolution separation and accurate size determination in pulsed-field gel electrophoresis of DNA. 3. Effect of electrical field shape.
    Cantor CR; Gaal A; Smith CL
    Biochemistry; 1988 Dec; 27(26):9216-21. PubMed ID: 2977288
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pulsed field gel electrophoresis: studies of DNA migration made with the programmable, autonomously-controlled electrode electrophoresis system.
    Birren BW; Hood L; Lai E
    Electrophoresis; 1989; 10(5-6):302-9. PubMed ID: 2527739
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparison of the physical properties and assembly pathways of the related bacteriophages T7, T3 and phi II.
    Serwer P; Watson RH; Hayes SJ; Allen JL
    J Mol Biol; 1983 Oct; 170(2):447-69. PubMed ID: 6631966
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nondenaturing agarose gel electrophoresis of RNA.
    Rio DC; Ares M; Hannon GJ; Nilsen TW
    Cold Spring Harb Protoc; 2010 Jun; 2010(6):pdb.prot5445. PubMed ID: 20516183
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The distribution of particles characterized by size and free mobility within polydisperse populations of protein-polysaccharide conjugates, determined from two-dimensional agarose electropherograms.
    Tietz D; Aldroubi A; Schneerson R; Unser M; Chrambach A
    Electrophoresis; 1991 Jan; 12(1):46-54. PubMed ID: 2050099
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Trapping of megabase-sized DNA molecules during agarose gel electrophoresis.
    Gurrieri S; Smith SB; Bustamante C
    Proc Natl Acad Sci U S A; 1999 Jan; 96(2):453-8. PubMed ID: 9892654
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pulsed-field acceleration: the electrophoretic behavior of large spherical particles in agarose gels.
    To KY; Boyde TR
    Electrophoresis; 1993 Jul; 14(7):597-600. PubMed ID: 8375350
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Separation of large circular DNA by electrophoresis in agarose gels.
    Cole KD; Tellez CM
    Biotechnol Prog; 2002; 18(1):82-7. PubMed ID: 11822904
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative analysis of macromolecular conformational changes using agarose gel electrophoresis: application to chromatin folding.
    Fletcher TM; Serwer P; Hansen JC
    Biochemistry; 1994 Sep; 33(36):10859-63. PubMed ID: 8086402
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A diversity of bacteriophage forms and genomes can be isolated from the surface sands of the Sahara Desert.
    Prigent M; Leroy M; Confalonieri F; Dutertre M; DuBow MS
    Extremophiles; 2005 Aug; 9(4):289-96. PubMed ID: 15947866
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An exactly solvable Ogston model of gel electrophoresis: I. The role of the symmetry and randomness of the gel structure.
    Slater GW; Guo HL
    Electrophoresis; 1996 Jun; 17(6):977-88. PubMed ID: 8832162
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exclusion of spheres by agarose gels during agarose gel electrophoresis: dependence on the sphere's radius and the gel's concentration.
    Serwer P; Hayes SJ
    Anal Biochem; 1986 Oct; 158(1):72-8. PubMed ID: 3799974
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Agarose gel electrophoresis and polyacrylamide gel electrophoresis for visualization of simple sequence repeats.
    Anderson J; Wright D; Meksem K
    Methods Mol Biol; 2013; 1006():167-77. PubMed ID: 23546791
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.