These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 10068625)

  • 1. The role of the nasal passages in the water economy of crested larks and desert larks.
    Tieleman BI; Williams JB; Michaeli G; Pinshow B
    Physiol Biochem Zool; 1999; 72(2):219-26. PubMed ID: 10068625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cutaneous and respiratory water loss in larks from arid and mesic environments.
    Tieleman BI; Williams JB
    Physiol Biochem Zool; 2002; 75(6):590-9. PubMed ID: 12601615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological adjustments to arid and mesic environments in larks (Alaudidae).
    Tieleman BI; Williams JB; Buschur ME
    Physiol Biochem Zool; 2002; 75(3):305-13. PubMed ID: 12177833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipids of the stratum corneum vary with cutaneous water loss among larks along a temperature-moisture gradient.
    Haugen M; Williams JB; Wertz P; Tieleman BI
    Physiol Biochem Zool; 2003; 76(6):907-17. PubMed ID: 14988806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of hyperthermia in the water economy of desert birds.
    Tieleman BI; Williams JB
    Physiol Biochem Zool; 1999; 72(1):87-100. PubMed ID: 9882607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nasal respiratory turbinate function in birds.
    Geist NR
    Physiol Biochem Zool; 2000; 73(5):581-9. PubMed ID: 11073793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ventilatory accommodation of oxygen demand and respiratory water loss in kangaroos from mesic and arid environments, the eastern grey kangaroo (Macropus giganteus) and the red kangaroo (Macropus rufus).
    Dawson TJ; Munn AJ; Blaney CE; Krockenberger A; Maloney SK
    Physiol Biochem Zool; 2000; 73(3):382-8. PubMed ID: 10893178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexibility in basal metabolic rate and evaporative water loss among hoopoe larks exposed to different environmental temperatures.
    Williams JB; Tieleman BI
    J Exp Biol; 2000 Oct; 203(Pt 20):3153-9. PubMed ID: 11003826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immune indexes of larks from desert and temperate regions show weak associations with life history but stronger links to environmental variation in microbial abundance.
    Horrocks NP; Hegemann A; Matson KD; Hine K; Jaquier S; Shobrak M; Williams JB; Tinbergen JM; Tieleman BI
    Physiol Biochem Zool; 2012; 85(5):504-15. PubMed ID: 22902379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water and energy economy of an omnivorous bird: population differences in the Rufous-collared Sparrow (Zonotrichia capensis).
    Sabat P; Cavieres G; Veloso C; Canals M
    Comp Biochem Physiol A Mol Integr Physiol; 2006 Aug; 144(4):485-90. PubMed ID: 16750645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phenotypic flexibility in cutaneous water loss and lipids of the stratum corneum.
    Haugen MJ; Tieleman BI; Williams JB
    J Exp Biol; 2003 Oct; 206(Pt 20):3581-8. PubMed ID: 12966049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterothermy of free-living Arabian sand gazelles (Gazella subgutturosa marica) in a desert environment.
    Ostrowski S; Williams JB
    J Exp Biol; 2006 Apr; 209(Pt 8):1421-9. PubMed ID: 16574802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Partitioning of evaporative water loss into respiratory and cutaneous pathways in Wahlberg's epauletted fruit bats (Epomophorus wahlbergi).
    Minnaar IA; Bennett NC; Chimimba CT; McKechnie AE
    Physiol Biochem Zool; 2014; 87(3):475-85. PubMed ID: 24769711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal physiology of a range-restricted desert lark.
    Kemp R; McKechnie AE
    J Comp Physiol B; 2019 Feb; 189(1):131-141. PubMed ID: 30488103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermoregulation by kangaroos from mesic and arid habitats: influence of temperature on routes of heat loss in eastern grey kangaroos (Macropus giganteus) and red kangaroos (Macropus rufus).
    Dawson TJ; Blaney CE; Munn AJ; Krockenberger A; Maloney SK
    Physiol Biochem Zool; 2000; 73(3):374-81. PubMed ID: 10893177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic rate, evaporative water loss and thermoregulatory state in four species of bats in the Negev desert.
    Muñoz-Garcia A; Larraín P; Ben-Hamo M; Cruz-Neto A; Williams JB; Pinshow B; Korine C
    Comp Biochem Physiol A Mol Integr Physiol; 2016 Jan; 191():156-165. PubMed ID: 26459985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic, ventilatory and hygric physiology of the chuditch (Dasyurus geoffroii; Marsupialia, Dasyuridae).
    Schmidt S; Withers PC; Cooper CE
    Comp Biochem Physiol A Mol Integr Physiol; 2009 Sep; 154(1):92-7. PubMed ID: 19447187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoregulation in the Angolan free-tailed bat Mops condylurus: A small mammal that uses hot roosts.
    Maloney SK; Bronner GN; Buffenstein R
    Physiol Biochem Zool; 1999; 72(4):385-96. PubMed ID: 10438676
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicted limits for evaporative cooling in heat stress relief of cattle in warm conditions.
    Berman A
    J Anim Sci; 2009 Oct; 87(10):3413-7. PubMed ID: 19574571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature profile in the nasal cavity.
    Keck T; Leiacker R; Riechelmann H; Rettinger G
    Laryngoscope; 2000 Apr; 110(4):651-4. PubMed ID: 10764013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.