These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 10068998)

  • 21. Regulation of the mid-blastula transition in amphibians.
    Etkin LD
    Dev Biol (N Y 1985); 1988; 5():209-25. PubMed ID: 3077975
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome wide decrease of DNA replication eye density at the midblastula transition of
    Platel M; Narassimprakash H; Ciardo D; Haccard O; Marheineke K
    Cell Cycle; 2019 Jul; 18(13):1458-1472. PubMed ID: 31130065
    [TBL] [Abstract][Full Text] [Related]  

  • 23. DNA damage signaling in early Xenopus embryos.
    Peng A; Lewellyn AL; Maller JL
    Cell Cycle; 2008 Jan; 7(1):3-6. PubMed ID: 18196968
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of Microtubule-Dependence of the Chromosome Cycle at the Midblastula Transition in Xenopus laevis Embryos: (Xenopus/cell cycle/chromosomes/microtubutes/midblastula transition).
    Clute P; Masui Y
    Dev Growth Differ; 1992 Feb; 34(1):27-36. PubMed ID: 37281649
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The cell cycle dependence of the secretory pathway in developing Xenopus laevis.
    Kanki JP; Newport JW
    Dev Biol; 1991 Jul; 146(1):214-27. PubMed ID: 2060702
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Developmental activation of the capability to undergo checkpoint-induced apoptosis in the early zebrafish embryo.
    Ikegami R; Hunter P; Yager TD
    Dev Biol; 1999 May; 209(2):409-33. PubMed ID: 10328930
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mimosine differentially inhibits DNA replication and cell cycle progression in somatic cells compared to embryonic cells of Xenopus laevis.
    Wang Y; Zhao J; Clapper J; Martin LD; Du C; DeVore ER; Harkins K; Dobbs DL; Benbow RM
    Exp Cell Res; 1995 Mar; 217(1):84-91. PubMed ID: 7867725
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Asymmetries in Cell Division, Cell Size, and Furrowing in the Xenopus laevis Embryo.
    Tassan JP; Wühr M; Hatte G; Kubiak J
    Results Probl Cell Differ; 2017; 61():243-260. PubMed ID: 28409308
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The midblastula transition in Xenopus embryos activates multiple pathways to prevent apoptosis in response to DNA damage.
    Finkielstein CV; Lewellyn AL; Maller JL
    Proc Natl Acad Sci U S A; 2001 Jan; 98(3):1006-11. PubMed ID: 11158585
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Yolk platelets impede nuclear expansion in Xenopus embryos.
    Shimogama S; Iwao Y; Hara Y
    Dev Biol; 2022 Feb; 482():101-113. PubMed ID: 34906546
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chk2/Cds1 protein kinase blocks apoptosis during early development of Xenopus laevis.
    Wroble BN; Sible JC
    Dev Dyn; 2005 Aug; 233(4):1359-65. PubMed ID: 15937936
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Does the potential for chaos constrain the embryonic cell-cycle oscillator?
    McIsaac RS; Huang KC; Sengupta A; Wingreen NS
    PLoS Comput Biol; 2011 Jul; 7(7):e1002109. PubMed ID: 21779158
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Responses to DNA damage in Xenopus: cell death or cell cycle arrest.
    Greenwood J; Costanzo V; Robertson K; Hensey C; Gautier J
    Novartis Found Symp; 2001; 237():221-30; discussion 230-4. PubMed ID: 11444046
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of heterogeneous mRNA-like RNA and low-molecular-weight RNA before the midblastula transition in embryos of Xenopus laevis.
    Nakakura N; Miura T; Yamana K; Ito A; Shiokawa K
    Dev Biol; 1987 Oct; 123(2):421-9. PubMed ID: 2443406
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulatory pathways coordinating cell cycle progression in early Xenopus development.
    Gotoh T; Villa LM; Capelluto DG; Finkielstein CV
    Results Probl Cell Differ; 2011; 53():171-99. PubMed ID: 21630146
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mathematical model for early development of the sea urchin embryo.
    Ciliberto A; Tyson JJ
    Bull Math Biol; 2000 Jan; 62(1):37-59. PubMed ID: 10824420
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reconstitution of endoplasmic reticulum in rapidly dividing cells of early Xenopus embryos.
    Manuel Dominguez J; Paiement J
    Am J Anat; 1989 Sep; 186(1):99-113. PubMed ID: 2782291
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Histone titration against the genome sets the DNA-to-cytoplasm threshold for the Xenopus midblastula transition.
    Amodeo AA; Jukam D; Straight AF; Skotheim JM
    Proc Natl Acad Sci U S A; 2015 Mar; 112(10):E1086-95. PubMed ID: 25713373
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The four animal blastomeres of the eight-cell stage of Xenopus laevis are intrinsically capable of differentiating into dorsal mesodermal derivatives.
    Grunz H
    Int J Dev Biol; 1994 Mar; 38(1):69-76. PubMed ID: 8074997
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Competence prepattern in the animal hemisphere of the 8-cell-stage Xenopus embryo.
    Kinoshita K; Bessho T; Asashima M
    Dev Biol; 1993 Nov; 160(1):276-84. PubMed ID: 8224543
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.