These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 10069010)

  • 1. Substrate-dependent cadmium toxicity affecting energy-linked K+/86Rb transport in Staphylococcus aureus.
    Tynecka Z; Malm A; Kosikowska U; Kot A
    Folia Microbiol (Praha); 1998; 43(6):617-22. PubMed ID: 10069010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Cd2+ on phosphate uptake by cadmium-resistant and cadmium-sensitive Staphylococcus aureus.
    Tynecka Z; Szcześniak Z
    Microbios; 1991; 67(274):53-63. PubMed ID: 1758309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cadmium-sensitive targets in the aerobic respiratory metabolism of Staphylococcus aureus.
    Tynecka Z; Malm A
    J Basic Microbiol; 1996; 36(6):447-52. PubMed ID: 8956492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane potential in a potassium transport-negative mutant of Escherichia coli K-12. The distribution of rubidium in the presence of valinomycin indicates a higher potential than that of the tetraphenylphosphonium cation.
    Bakker EP
    Biochim Biophys Acta; 1982 Sep; 681(3):474-83. PubMed ID: 6812627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energetic basis of cadmium toxicity in Staphylococcus aureus.
    Tynecka Z; Malm A
    Biometals; 1995 Jul; 8(3):197-204. PubMed ID: 7647516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic insensitivity to cadmium of the L-lactate oxidizing system in staphylococcoccus aureus.
    Tynecka Z; Malm A
    FEMS Microbiol Lett; 1995 Jun; 129(1):11-5. PubMed ID: 7781984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A two-gene ABC-type transport system that extrudes Na+ in Bacillus subtilis is induced by ethanol or protonophore.
    Cheng J; Guffanti AA; Krulwich TA
    Mol Microbiol; 1997 Mar; 23(6):1107-20. PubMed ID: 9106203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2-Oxoglutarate transport system in Staphylococcus aureus.
    Tynecka Z; Korona-Głowniak I; Loś R
    Arch Microbiol; 2001 Jul; 176(1-2):143-50. PubMed ID: 11479714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy donor-dependent effect of Cd2+ on [14C]glutamate transport in Staphylococcus aureus.
    Malm A; Tynecka Z
    Acta Biochim Pol; 1990; 37(1):117-20. PubMed ID: 1982385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dependence of mammalian putrescine and spermidine transport on plasma-membrane potential: identification of an amiloride binding site on the putrescine carrier.
    Poulin R; Zhao C; Verma S; Charest-Gaudreault R; Audette M
    Biochem J; 1998 Mar; 330 ( Pt 3)(Pt 3):1283-91. PubMed ID: 9494098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Permeability change in transformed mouse fibroblasts caused by ionophores, and its relationship to membrane permeabilization by exogenous ATP.
    Friedberg I; Weisman GA; De BK
    J Membr Biol; 1985; 83(3):251-9. PubMed ID: 3999123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmid-linked protection of [14C]-glutamate transport and its oxidation against Cd2+ in Staphylococcus aureus.
    Tynecka Z; Malm A; Skwarek T; Szcześniak Z
    Acta Microbiol Pol; 1989; 38(2):131-41. PubMed ID: 2482659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Penetrating cations enhance uncoupling activity of anionic protonophores in mitochondria.
    Antonenko YN; Khailova LS; Knorre DA; Markova OV; Rokitskaya TI; Ilyasova TM; Severina II; Kotova EA; Karavaeva YE; Prikhodko AS; Severin FF; Skulachev VP
    PLoS One; 2013; 8(4):e61902. PubMed ID: 23626747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved procedure for reconstitution of the uncoupling protein and in-depth analysis of H+/OH- transport.
    Winkler E; Klingenberg M
    Eur J Biochem; 1992 Jul; 207(1):135-45. PubMed ID: 1378400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The sodium cycle. I. Na+-dependent motility and modes of membrane energization in the marine alkalotolerant vibrio Alginolyticus.
    Dibrov PA; Kostryko VA; Lazarova RL; Skulachev VP; Smirnova IA
    Biochim Biophys Acta; 1986 Jul; 850(3):449-57. PubMed ID: 2425848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Cd2+ on phosphate exchange in Staphylococcus aureus.
    Tynecka Z; Malm A
    Acta Biochim Pol; 1992; 39(1):39-43. PubMed ID: 1441833
    [No Abstract]   [Full Text] [Related]  

  • 17. Energy coupling in the active transport of proline and glutamate by the photosynthetic halophile Ectothiorhodospira halophila.
    Rinehart CA; Hubbard JS
    J Bacteriol; 1976 Sep; 127(3):1255-64. PubMed ID: 956126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. H+, K+, and Na+ transport across phospholipid vesicular membrane by the combined action of proton uncoupler 2,4-dinitrophenol and valinomycin.
    Prabhananda BS; Kombrabail MH
    Biochim Biophys Acta; 1996 Jul; 1282(2):193-9. PubMed ID: 8703973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of oxidation of inorganic sulfur compounds by thiosulfate-grown Thiobacillus thiooxidans.
    Masau RJ; Oh JK; Suzuki I
    Can J Microbiol; 2001 Apr; 47(4):348-58. PubMed ID: 11358175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane potential in liposomes measured by the transmembrane distribution of 86Rb+, tetraphenylphosphonium or triphenylmethylphosphonium: effect of cholesterol in the lipid bilayer.
    Nakazato K; Murakami N; Konishi T; Hatano Y
    Biochim Biophys Acta; 1988 Dec; 946(1):143-50. PubMed ID: 3207727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.