BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 10069389)

  • 1. Application of metabolic control analysis to the study of toxic effects of copper in muscle glycolysis.
    Jannaschk D; Burgos M; Centerlles JJ; Ovadi J; Cascante M
    FEBS Lett; 1999 Feb; 445(1):144-8. PubMed ID: 10069389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of control analysis data using different approaches: modelling and experiments with muscle extract.
    Puigjaner J; Raïs B; Burgos M; Comin B; Ovádi J; Cascante M
    FEBS Lett; 1997 Nov; 418(1-2):47-52. PubMed ID: 9414093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of cadmium and mercury on the upper part of skeletal muscle glycolysis in mice.
    Ramírez-Bajo MJ; de Atauri P; Ortega F; Westerhoff HV; Gelpí JL; Centelles JJ; Cascante M
    PLoS One; 2014; 9(1):e80018. PubMed ID: 24489641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurotoxic effects of copper: inhibition of glycolysis and glycolytic enzymes.
    Lai JC; Blass JP
    Neurochem Res; 1984 Dec; 9(12):1699-710. PubMed ID: 6241658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental validation of metabolic pathway modeling.
    Moreno-Sánchez R; Encalada R; Marín-Hernández A; Saavedra E
    FEBS J; 2008 Jul; 275(13):3454-69. PubMed ID: 18510554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determining and understanding the control of glycolysis in fast-growth tumor cells. Flux control by an over-expressed but strongly product-inhibited hexokinase.
    Marín-Hernández A; Rodríguez-Enríquez S; Vital-González PA; Flores-Rodríguez FL; Macías-Silva M; Sosa-Garrocho M; Moreno-Sánchez R
    FEBS J; 2006 May; 273(9):1975-88. PubMed ID: 16640561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic modeling can describe in vivo glycolysis in Entamoeba histolytica.
    Saavedra E; Marín-Hernández A; Encalada R; Olivos A; Mendoza-Hernández G; Moreno-Sánchez R
    FEBS J; 2007 Sep; 274(18):4922-40. PubMed ID: 17824961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling cancer glycolysis under hypoglycemia, and the role played by the differential expression of glycolytic isoforms.
    Marín-Hernández A; López-Ramírez SY; Del Mazo-Monsalvo I; Gallardo-Pérez JC; Rodríguez-Enríquez S; Moreno-Sánchez R; Saavedra E
    FEBS J; 2014 Aug; 281(15):3325-45. PubMed ID: 24912776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organization-dependent effects of toxic bivalent ions microtubule assembly and glycolysis.
    Liliom K; Wágner G; Pácz A; Cascante M; Kovács J; Ovádi J
    Eur J Biochem; 2000 Aug; 267(15):4731-9. PubMed ID: 10903506
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of glycolysis in cerebral cortex slices.
    Rolleston FS; Newsholme EA
    Biochem J; 1967 Aug; 104(2):524-33. PubMed ID: 4227784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model for glycolytic oscillations based on skeletal muscle phosphofructokinase kinetics.
    Smolen P
    J Theor Biol; 1995 May; 174(2):137-48. PubMed ID: 7643610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic control analysis as a strategy to identify therapeutic targets, the case of cancer glycolysis.
    Marín-Hernández Á; Saavedra E
    Biosystems; 2023 Sep; 231():104986. PubMed ID: 37506818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Key glycolytic enzyme activities of skeletal muscle are decreased under fed and fasted states in mice with knocked down levels of Shc proteins.
    Hagopian K; Tomilov AA; Kim K; Cortopassi GA; Ramsey JJ
    PLoS One; 2015; 10(4):e0124204. PubMed ID: 25880638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of in situ glycolytic flux by bisphosphorylated compounds: studies in porous rat adipocytes.
    McCormick KL; Hingre K; Brown J; Mick GJ
    Biochim Biophys Acta; 1992 Apr; 1135(1):1-7. PubMed ID: 1591266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of glycolysis and expression of glucose metabolism-related genes by reactive oxygen species in contracting skeletal muscle cells.
    Pinheiro CH; Silveira LR; Nachbar RT; Vitzel KF; Curi R
    Free Radic Biol Med; 2010 Apr; 48(7):953-60. PubMed ID: 20080177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of enzyme-enzyme complexes on the overall glycolytic rate in vivo.
    Brooks SP; Storey KB
    Biochem Int; 1991 Oct; 25(3):477-89. PubMed ID: 1805792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competitive cation binding computations of proton balance for reactions of the phosphagen and glycolytic energy systems within skeletal muscle.
    Robergs RA
    PLoS One; 2017; 12(12):e0189822. PubMed ID: 29267370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The regulation of glycolysis in perfused locust flight muscle.
    Ford WC; Candy DJ
    Biochem J; 1972 Dec; 130(4):1101-12. PubMed ID: 4266373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transition time control analysis of a glycolytic system under different glucose concentrations. Control of transition time versus control of flux.
    Torres NV; Meléndez-Hevia E
    Mol Cell Biochem; 1992 Jun; 112(2):109-15. PubMed ID: 1386406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycolytic enzymes of Trypanosoma brucei. Simultaneous purification, intraglycosomal concentrations and physical properties.
    Misset O; Bos OJ; Opperdoes FR
    Eur J Biochem; 1986 Jun; 157(2):441-53. PubMed ID: 2940090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.