These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 10069790)

  • 1. Caval contribution to flow in the branch pulmonary arteries of Fontan patients with a novel application of magnetic resonance presaturation pulse.
    Fogel MA; Weinberg PM; Rychik J; Hubbard A; Jacobs M; Spray TL; Haselgrove J
    Circulation; 1999 Mar; 99(9):1215-21. PubMed ID: 10069790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of blood flow distribution asymmetry and vascular geometry in patients with Fontan circulation using 4-D flow MRI.
    Jarvis K; Schnell S; Barker AJ; Garcia J; Lorenz R; Rose M; Chowdhary V; Carr J; Robinson JD; Rigsby CK; Markl M
    Pediatr Radiol; 2016 Oct; 46(11):1507-19. PubMed ID: 27350377
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pulmonary blood distribution after total cavopulmonary connection of different types.
    Chu J; Wu Q; Wang W
    Chin Med Sci J; 2003 Mar; 18(1):46-9. PubMed ID: 12901528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Caval flow reflects Fontan hemodynamics: quantification by magnetic resonance imaging.
    Ovroutski S; Nordmeyer S; Miera O; Ewert P; Klimes K; Kühne T; Berger F
    Clin Res Cardiol; 2012 Feb; 101(2):133-8. PubMed ID: 22094486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Age-Related Change in Caval Flow Ratio on Hepatic Flow Distribution in the Fontan Circulation.
    Govindarajan V; Marshall L; Sahni A; Cetatoiu MA; Eickhoff EE; Davee J; St Clair N; Schulz NE; Hoganson DM; Hammer PE; Ghelani SJ; Prakash A; Del Nido PJ; Rathod RH
    Circ Cardiovasc Imaging; 2024 Apr; 17(4):e016104. PubMed ID: 38567518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulmonary and caval blood flow patterns in patients with intracardiac and extracardiac Fontan: a magnetic resonance study.
    Klimes K; Abdul-Khaliq H; Ovroutski S; Hui W; Alexi-Meskishvili V; Spors B; Hetzer R; Felix R; Lange PE; Berger F; Gutberlet M
    Clin Res Cardiol; 2007 Mar; 96(3):160-7. PubMed ID: 17180575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow during exercise in the total cavopulmonary connection measured by magnetic resonance velocity mapping.
    Pedersen EM; Stenbøg EV; Fründ T; Houlind K; Kromann O; Sørensen KE; Emmertsen K; Hjortdal VE
    Heart; 2002 Jun; 87(6):554-8. PubMed ID: 12010939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hemodynamic Impact of Superior Vena Cava Placement in the Y-Graft Fontan Connection.
    Restrepo M; Crouch AC; Haggerty CM; Rossignac J; Slesnick TC; Kanter KR; Yoganathan AP
    Ann Thorac Surg; 2016 Jan; 101(1):183-9. PubMed ID: 26431925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Postsurgical comparison of pulsatile hemodynamics in five unique total cavopulmonary connections: identifying ideal connection strategies.
    Hong H; Menon PG; Zhang H; Ye L; Zhu Z; Chen H; Liu J
    Ann Thorac Surg; 2013 Oct; 96(4):1398-1404. PubMed ID: 23910632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Four-dimensional flow magnetic resonance imaging-derived blood flow energetics of the inferior vena cava-to-extracardiac conduit junction in Fontan patients.
    Rijnberg FM; Elbaz MSM; Westenberg JJM; Kamphuis VP; Helbing WA; Kroft LJ; Blom NA; Hazekamp MG; Roest AAW
    Eur J Cardiothorac Surg; 2019 Jun; 55(6):1202-1210. PubMed ID: 30590476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of inflow waveform phase-difference for minimized total cavopulmonary power loss.
    Dur O; DeGroff CG; Keller BB; Pekkan K
    J Biomech Eng; 2010 Mar; 132(3):031012. PubMed ID: 20459200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pulmonary blood flow distribution after the total cavopulmonary connection for complex cardiac anomalies.
    Tayama M; Hirata N; Matsushita T; Sano T; Fukushima N; Sawa Y; Nishimura T; Matsuda H
    Heart Vessels; 1999; 14(3):154-60. PubMed ID: 10776809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical simulation of a realistic total cavo-pulmonary connection: effect of unbalanced pulmonary resistances on hydrodynamic performance.
    Grigioni M; Daniele C; Del Gaudio C; Morbiducci U; Balducci A; D'Avenio G; Amodeo A; Barbaro V; Di Donato R
    Int J Artif Organs; 2003 Nov; 26(11):1005-14. PubMed ID: 14708830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of bypass angles on extracardiac Fontan connections: a numerical study.
    Ding J; Liu Y; Wang F
    Int J Numer Method Biomed Eng; 2013 Mar; 29(3):351-62. PubMed ID: 23345174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational fluid dynamics in the evaluation of hemodynamic performance of cavopulmonary connections after the Norwood procedure for hypoplastic left heart syndrome.
    Bove EL; de Leval MR; Migliavacca F; Guadagni G; Dubini G
    J Thorac Cardiovasc Surg; 2003 Oct; 126(4):1040-7. PubMed ID: 14566244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of connection geometry and SVC-IVC flow rate ratio on flow structures within the total cavopulmonary connection: a numerical study.
    Khunatorn Y; Mahalingam S; DeGroff CG; Shandas R
    J Biomech Eng; 2002 Aug; 124(4):364-77. PubMed ID: 12188203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suction against resistance: a new breathing technique to significantly improve the blood flow ratio of the superior and inferior vena cava.
    Gutzeit A; Roos JE; Hergan K; von Weymarn C; Wälti S; Reischauer C; Froehlich JM
    Eur Radiol; 2014 Dec; 24(12):3034-41. PubMed ID: 25103533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Noninvasive quantification of systemic-to-pulmonary collateral flow: a major source of inefficiency in patients with superior cavopulmonary connections.
    Whitehead KK; Gillespie MJ; Harris MA; Fogel MA; Rome JJ
    Circ Cardiovasc Imaging; 2009 Sep; 2(5):405-11. PubMed ID: 19808629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological Fontan Procedure.
    Corno AF; Owen MJ; Cangiani A; Hall EJC; Rona A
    Front Pediatr; 2019; 7():196. PubMed ID: 31179252
    [No Abstract]   [Full Text] [Related]  

  • 20. Physiological rationale for a bidirectional cavopulmonary shunt. A versatile complement to the Fontan principle.
    Hopkins RA; Armstrong BE; Serwer GA; Peterson RJ; Oldham HN
    J Thorac Cardiovasc Surg; 1985 Sep; 90(3):391-8. PubMed ID: 4033175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.