BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 10069846)

  • 1. Impacts of aluminum on the cytoskeleton of the maize root apex. short-term effects on the distal part of the transition zone.
    Sivaguru M; Baluska F; Volkmann D; Felle HH; Horst WJ
    Plant Physiol; 1999 Mar; 119(3):1073-82. PubMed ID: 10069846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genotypical differences in aluminum resistance of maize are expressed in the distal part of the transition zone. Is reduced basipetal auxin flow involved in inhibition of root elongation by aluminum?
    Kollmeier M; Felle HH; Horst WJ
    Plant Physiol; 2000 Mar; 122(3):945-56. PubMed ID: 10712559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aluminum activates a citrate-permeable anion channel in the aluminum-sensitive zone of the maize root apex. A comparison between an aluminum- sensitive and an aluminum-resistant cultivar.
    Kollmeier M; Dietrich P; Bauer CS; Horst WJ; Hedrich R
    Plant Physiol; 2001 May; 126(1):397-410. PubMed ID: 11351102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution and dynamics of the cytoskeleton in graviresponding protonemata and rhizoids of characean algae: exclusion of microtubules and a convergence of actin filaments in the apex suggest an actin-mediated gravitropism.
    Braun M; Wasteneys GO
    Planta; 1998 May; 205(1):39-50. PubMed ID: 9599803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different effects of aluminum on the actin cytoskeleton and brefeldin A-sensitive vesicle recycling in root apex cells of two maize varieties differing in root elongation rate and aluminum tolerance.
    Amenós M; Corrales I; Poschenrieder C; Illés P; Baluska F; Barceló J
    Plant Cell Physiol; 2009 Mar; 50(3):528-40. PubMed ID: 19176573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete disintegration of the microtubular cytoskeleton precedes its auxin-mediated reconstruction in postmitotic maize root cells.
    Baluska F; Barlow PW; Volkmann D
    Plant Cell Physiol; 1996 Oct; 37(7):1013-21. PubMed ID: 11536780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alterations in the cytoskeleton accompany aluminum-induced growth inhibition and morphological changes in primary roots of maize.
    Blancaflor EB; Jones DL; Gilroy S
    Plant Physiol; 1998 Sep; 118(1):159-72. PubMed ID: 9733535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of myosin ATPase inhibitor 2,3-butanedione 2-monoxime on distributions of myosins, F-actin, microtubules, and cortical endoplasmic reticulum in maize root apices.
    Samaj J; Peters M; Volkmann D; Baluska F
    Plant Cell Physiol; 2000 May; 41(5):571-82. PubMed ID: 10929940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted expression of SbMATE in the root distal transition zone is responsible for sorghum aluminum resistance.
    Sivaguru M; Liu J; Kochian LV
    Plant J; 2013 Oct; 76(2):297-307. PubMed ID: 23865685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Reorganization of the tubulin and actin cytoskeleton under acclimation and abscisic acid treatment of Triticum aestivum L. plants].
    Olinevich OV; Khokhlova LP
    Tsitologiia; 2002; 44(6):532-44. PubMed ID: 12236096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Root cytoskeleton: its role in perception of and response to gravity.
    Baluska F; Hasenstein KH
    Planta; 1997; 203(Suppl):S69-78. PubMed ID: 11540335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The organization of the actin cytoskeleton in vertical and graviresponding primary roots of maize.
    Blancaflor EB; Hasenstein KH
    Plant Physiol; 1997 Apr; 113(4):1447-55. PubMed ID: 11536803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical actin filaments potentially interact with cortical microtubules in regulating polarity of cell expansion in primary roots of maize (Zea mays L.).
    Blancaflor EB
    J Plant Growth Regul; 2000 Dec; 19(4):406-14. PubMed ID: 11762380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organization of cytoskeleton during differentiation of gravisensitive root sites under clinorotation.
    Shevchenko GV; Kordyum EL
    Adv Space Res; 2005; 35(2):289-95. PubMed ID: 15934208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rearrangements of F-actin arrays in growing cells of intact maize root apex tissues: a major developmental switch occurs in the postmitotic transition region.
    Baluska F; Vitha S; Barlow PW; Volkmann D
    Eur J Cell Biol; 1997 Feb; 72(2):113-21. PubMed ID: 9157007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial coordination of aluminium uptake, production of reactive oxygen species, callose production and wall rigidification in maize roots.
    Jones DL; Blancaflor EB; Kochian LV; Gilroy S
    Plant Cell Environ; 2006 Jul; 29(7):1309-18. PubMed ID: 17080952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Root cell patterning: a primary target for aluminium toxicity in maize.
    Doncheva S; Amenós M; Poschenrieder C; Barceló J
    J Exp Bot; 2005 Apr; 56(414):1213-20. PubMed ID: 15737983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organization of cortical microtubules in graviresponding maize roots.
    Blancaflor EB; Hasenstein KH
    Planta; 1993; 191():231-7. PubMed ID: 11537991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell Wall Pectin and its Methyl-esterification in Transition Zone Determine Al Resistance in Cultivars of Pea (Pisum sativum).
    Li X; Li Y; Qu M; Xiao H; Feng Y; Liu J; Wu L; Yu M
    Front Plant Sci; 2016; 7():39. PubMed ID: 26870060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gravitropism of the primary root of maize: a complex pattern of differential cellular growth in the cortex independent of the microtubular cytoskeleton.
    Baluska F; Hauskrecht M; Barlow PW; Sievers A
    Planta; 1996 Feb; 198(2):310-8. PubMed ID: 11540727
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.