These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 10070157)
1. Adenosine-induced renal vasoconstriction in diabetes mellitus rats: role of nitric oxide. Pflueger AC; Osswald H; Knox FG Am J Physiol; 1999 Mar; 276(3):F340-6. PubMed ID: 10070157 [TBL] [Abstract][Full Text] [Related]
2. Adenosine-induced renal vasoconstriction in diabetes mellitus rats: role of prostaglandins. Pflueger AC; Gross JM; Knox FG Am J Physiol; 1999 Nov; 277(5):R1410-7. PubMed ID: 10564214 [TBL] [Abstract][Full Text] [Related]
3. Increased sensitivity of the renal vasculature to adenosine in streptozotocin-induced diabetes mellitus rats. Pflueger AC; Schenk F; Osswald H Am J Physiol; 1995 Oct; 269(4 Pt 2):F529-35. PubMed ID: 7485538 [TBL] [Abstract][Full Text] [Related]
4. Interactions of adenosine A1 receptor-mediated renal vasoconstriction with endogenous nitric oxide and ANG II. Barrett RJ; Droppleman DA Am J Physiol; 1993 Nov; 265(5 Pt 2):F651-9. PubMed ID: 8238545 [TBL] [Abstract][Full Text] [Related]
5. Impaired renal blood flow autoregulation in two-kidney, one-clip hypertensive rats is caused by enhanced activity of nitric oxide. Turkstra E; Braam B; Koomans HA J Am Soc Nephrol; 2000 May; 11(5):847-855. PubMed ID: 10770962 [TBL] [Abstract][Full Text] [Related]
6. Superoxide anion curbs nitric oxide modulation of afferent arteriolar ANG II responsiveness in diabetes mellitus. Schoonmaker GC; Fallet RW; Carmines PK Am J Physiol Renal Physiol; 2000 Feb; 278(2):F302-9. PubMed ID: 10662734 [TBL] [Abstract][Full Text] [Related]
7. Role of NO and COX pathways in mediation of adenosine A1 receptor-induced renal vasoconstriction. Walkowska A; Dobrowolski L; Kompanowska-Jezierska E; Sadowski J Exp Biol Med (Maywood); 2007 May; 232(5):690-4. PubMed ID: 17463166 [TBL] [Abstract][Full Text] [Related]
8. Superoxide dismutase restores the influence of nitric oxide on renal arterioles in diabetes mellitus. Ohishi K; Carmines PK J Am Soc Nephrol; 1995 Feb; 5(8):1559-66. PubMed ID: 7756588 [TBL] [Abstract][Full Text] [Related]
9. Functional relation between nitric oxide and noradrenaline for the modulation of vascular tone in rat mesenteric vasculature. Yamamoto R; Wada A; Asada Y; Yuhi T; Yanagita T; Niina H; Sumiyoshi A Naunyn Schmiedebergs Arch Pharmacol; 1994 Apr; 349(4):362-6. PubMed ID: 8058108 [TBL] [Abstract][Full Text] [Related]
10. Determinants of renal vasoconstriction after systemic inhibition of nitric oxide synthesis in rats. Brand-Schieber E; Pucci M; Nasjletti A Am J Physiol; 1996 Jun; 270(6 Pt 2):R1203-7. PubMed ID: 8764283 [TBL] [Abstract][Full Text] [Related]
11. Contribution of nitric oxide produced by inducible nitric oxide synthase to vascular responses of mesenteric arterioles in streptozotocin-diabetic rats. Ishikawa T; Kohno F; Kawase R; Yamamoto Y; Nakayama K Br J Pharmacol; 2004 Jan; 141(2):269-76. PubMed ID: 14707030 [TBL] [Abstract][Full Text] [Related]
12. Nitric oxide, but not vasopressin V2 receptor-mediated vasodilation, modulates vasopressin-induced renal vasoconstriction in rats. Loichot C; Cazaubon C; De Jong W; Helwig JJ; Nisato D; Imbs JL; Barthelmebs M Naunyn Schmiedebergs Arch Pharmacol; 2000 Mar; 361(3):319-26. PubMed ID: 10731046 [TBL] [Abstract][Full Text] [Related]
13. Contribution of endogenous endothelin-1 to the maintenance of vascular tone: role of nitric oxide. Gellai M; De Wolf R; Fletcher T; Nambi P Pharmacology; 1997 Dec; 55(6):299-308. PubMed ID: 9413859 [TBL] [Abstract][Full Text] [Related]
14. Pioglitazone, a PPARgamma agonist, restores endothelial function in aorta of streptozotocin-induced diabetic rats. Majithiya JB; Paramar AN; Balaraman R Cardiovasc Res; 2005 Apr; 66(1):150-61. PubMed ID: 15769458 [TBL] [Abstract][Full Text] [Related]
15. L-arginine and antioxidant diet supplementation partially restores nitric oxide-dependent regulation of phenylephrine renal vasoconstriction in diabetics rats. Coronel I; Arellano-Mendoza MG; del Valle-Mondragon L; Vargas-Robles H; Castorena-Torres F; Romo E; Rios A; Escalante B J Ren Nutr; 2010 May; 20(3):158-68. PubMed ID: 20097580 [TBL] [Abstract][Full Text] [Related]
16. Involvement of nitric oxide in the regulation of regional hemodynamics in streptozotocin-diabetic rats. Granstam E; Granstam SO Physiol Res; 2003; 52(2):159-69. PubMed ID: 12678658 [TBL] [Abstract][Full Text] [Related]
17. Endothelin-induced changes in blood flow in STZ-diabetic and non-diabetic rats: relation to nitric oxide synthase and cyclooxygenase inhibition. Granstam SO; Granstam E J Physiol Sci; 2011 Nov; 61(6):497-505. PubMed ID: 21881977 [TBL] [Abstract][Full Text] [Related]
18. Suppressed impact of nitric oxide on renal arteriolar function in rats with chronic heart failure. Ikenaga H; Ishii N; Didion SP; Zhang K; Cornish KG; Patel KP; Mayhan WG; Carmines PK Am J Physiol; 1999 Jan; 276(1):F79-87. PubMed ID: 9887083 [TBL] [Abstract][Full Text] [Related]
19. Diabetes-induced microvascular dysfunction in the hydronephrotic kidney: role of nitric oxide. De Vriese AS; Stoenoiu MS; Elger M; Devuyst O; Vanholder R; Kriz W; Lameire NH Kidney Int; 2001 Jul; 60(1):202-10. PubMed ID: 11422752 [TBL] [Abstract][Full Text] [Related]
20. Cellular transport of l-arginine determines renal medullary blood flow in control rats, but not in diabetic rats despite enhanced cellular uptake capacity. Persson P; Fasching A; Teerlink T; Hansell P; Palm F Am J Physiol Renal Physiol; 2017 Feb; 312(2):F278-F283. PubMed ID: 27927650 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]