These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 10070545)

  • 1. The effect of spherical and other aberrations upon the modulation transfer of the defocussed human eye.
    Jansonius NM; Kooijman AC
    Ophthalmic Physiol Opt; 1998 Nov; 18(6):504-13. PubMed ID: 10070545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective broad-band spatial frequency loss in contrast sensitivity functions. Comparison with a model based on optical transfer functions.
    Bour LJ; Apkarian P
    Invest Ophthalmol Vis Sci; 1996 Nov; 37(12):2475-84. PubMed ID: 8933764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compromise between spherical and chromatic aberration and depth of focus in aspheric intraocular lenses.
    Franchini A
    J Cataract Refract Surg; 2007 Mar; 33(3):497-509. PubMed ID: 17321402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of positive and negative defocus on contrast sensitivity in myopes and non-myopes.
    Radhakrishnan H; Pardhan S; Calver RI; O'Leary DJ
    Vision Res; 2004; 44(16):1869-78. PubMed ID: 15145681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spherical aberration and contrast sensitivity in eyes implanted with aspheric and spherical intraocular lenses: a comparative study.
    Tzelikis PF; Akaishi L; Trindade FC; Boteon JE
    Am J Ophthalmol; 2008 May; 145(5):827-33. PubMed ID: 18291345
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of spherical aberration on visual acuity at different contrasts.
    Li J; Xiong Y; Wang N; Li S; Dai Y; Xue L; Zhao H; Jiang W; Zhang Y
    J Cataract Refract Surg; 2009 Aug; 35(8):1389-95. PubMed ID: 19631126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ocular aberrations and contrast sensitivity after cataract surgery with AcrySof IQ intraocular lens implantation Clinical comparative study.
    Tzelikis PF; Akaishi L; Trindade FC; Boteon JE
    J Cataract Refract Surg; 2007 Nov; 33(11):1918-24. PubMed ID: 17964398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between contrast sensitivity and spherical aberration: comparison of 7 contrast sensitivity tests with natural and artificial pupils in healthy eyes.
    van Gaalen KW; Jansonius NM; Koopmans SA; Terwee T; Kooijman AC
    J Cataract Refract Surg; 2009 Jan; 35(1):47-56. PubMed ID: 19101424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical performance of 3 intraocular lens designs in the presence of decentration.
    Altmann GE; Nichamin LD; Lane SS; Pepose JS
    J Cataract Refract Surg; 2005 Mar; 31(3):574-85. PubMed ID: 15811748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Method for estimating the spheric aberration of the human crystalline lens in vivo.
    Tomlinson A; Hemenger RP; Garriott R
    Invest Ophthalmol Vis Sci; 1993 Mar; 34(3):621-9. PubMed ID: 8449680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contrast sensitivity function and ocular higher-order wavefront aberrations in normal human eyes.
    Oshika T; Okamoto C; Samejima T; Tokunaga T; Miyata K
    Ophthalmology; 2006 Oct; 113(10):1807-12. PubMed ID: 16876865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical aberrations in the mouse eye.
    de la Cera EG; Rodríguez G; Llorente L; Schaeffel F; Marcos S
    Vision Res; 2006 Aug; 46(16):2546-53. PubMed ID: 16516259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intraindividual comparison of aspherical and spherical intraocular lenses of same material and platform.
    Ohtani S; Miyata K; Samejima T; Honbou M; Oshika T
    Ophthalmology; 2009 May; 116(5):896-901. PubMed ID: 19410948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of pupil diameter on the relation between ocular higher-order aberration and contrast sensitivity after laser in situ keratomileusis.
    Oshika T; Tokunaga T; Samejima T; Miyata K; Kawana K; Kaji Y
    Invest Ophthalmol Vis Sci; 2006 Apr; 47(4):1334-8. PubMed ID: 16565365
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of adaptive optics to determine the optimal ocular spherical aberration.
    Piers PA; Manzanera S; Prieto PM; Gorceix N; Artal P
    J Cataract Refract Surg; 2007 Oct; 33(10):1721-6. PubMed ID: 17889766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of spherical aberration on visual function under photopic and mesopic conditions after cataract surgery.
    Yamaguchi T; Dogru M; Yamaguchi K; Ono T; Saiki M; Okuyama H; Tsubota K; Negishi K
    J Cataract Refract Surg; 2009 Jan; 35(1):57-63. PubMed ID: 19101425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spherical aberration of the lens of the ground squirrel (Spermophilis tridecemlineatus).
    Sivak JG; Gur M; Dovrat A
    Ophthalmic Physiol Opt; 1983; 3(3):261-5. PubMed ID: 6646760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limits of spherical blur determined with an adaptive optics mirror.
    Atchison DA; Guo H; Fisher SW
    Ophthalmic Physiol Opt; 2009 May; 29(3):300-11. PubMed ID: 19422562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of higher order aberrations in eyes with aspherical or spherical intraocular lenses.
    Kim SW; Ahn H; Kim EK; Kim TI
    Eye (Lond); 2008 Dec; 22(12):1493-8. PubMed ID: 18927594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wavefront aberrations, depth of focus, and contrast sensitivity with aspheric and spherical intraocular lenses: fellow-eye study.
    Nanavaty MA; Spalton DJ; Boyce J; Saha S; Marshall J
    J Cataract Refract Surg; 2009 Apr; 35(4):663-71. PubMed ID: 19304086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.